Initial Identification of Thrust and Orbit Elements for Continuous Thrust Spacecraft in Circular Orbit
Abstract
:1. Introduction
2. Modelling of Orbit Motion
2.1. Thrust and Orbit Elements
- (a)
- The semi-major axis variation is related only to the tangential acceleration and not to the orbit plane normal acceleration.
- (b)
- The inclination variation is related to the normal acceleration and the spacecraft velocity. There is a fixed mathematical relationship between the spacecraft velocity and the half-length axis, so the change in inclination is related to both the normal acceleration in the expression and the normal acceleration (the term affecting the change in the semi-major axis).
2.2. Approximate Solution of the Perturbation Equations
2.2.1. Continuous Thrust Motion Control Equations
2.2.2. Analytical Model for Semi-Major Axis
2.2.3. Analytical Model of Inclination
2.2.4. Analytical Model of Argument of Latitude
2.2.5. Analysis of Perturbation Effects
3. Transformation of Orbit Elements
3.1. Semi-Major Axis Transformation
3.2. Inclination Transformation
3.3. Argument of Latitude Transformation
4. Thrust and Orbit Elements Solving Methods
5. Simulation Analysis
6. Conclusions
- (1)
- The adoption of the analytical orbit model can reflect the relationship between the elements more clearly, and, at the same time, simplify the calculation and quickly solve the problem.
- (2)
- The decoupling of tangential thrust and normal thrust parameters can simplify the solving process, and the solving accuracy of tangential acceleration and normal acceleration can reach the order of 10−6 and 10−5 m/s2, which can be directly applied to engineering practice.
- (3)
- In the process of solving the RAAN and argument of latitude, only the long-term effect of the spacecraft by the J2 term perturbation is considered, and its short-term effect with the thrust acceleration is not considered, so the solution accuracy is lower, but it can be used as the initial value to be substituted into the next step of the precise orbit determination.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, T.; Ahn, J. Optimal Deployment of Satellite Mega-Constellation. Acta Astronaut. 2023, 202, 653–669. [Google Scholar] [CrossRef]
- Anderson, J.F.; Cardin, M.-A.; Grogan, P.T. Design and Analysis of Flexible Multi-Layer Staged Deployment for Satellite Mega-Constellations under Demand Uncertainty. Acta Astronaut. 2022, 198, 179–193. [Google Scholar] [CrossRef]
- Fan, Z.; Huo, M.; Qi, N.; Xu, Y.; Song, Z. Fast Preliminary Design of Low-Thrust Trajectories for Multi-Asteroid Exploration. Aerosp. Sci. Technol. 2019, 93, 105295. [Google Scholar] [CrossRef]
- Ren, Y. The Development Status of Starlink and Its Countermeasures. Mod. Def. Technol. 2022, 50, 11–17. [Google Scholar] [CrossRef]
- Yu, S.; Wang, X.; Zhu, T. Maneuver Detection Methods for Space Objects Based on Dynamical Model—ScienceDirect. Adv. Space Res. 2021, 68, 71–84. [Google Scholar] [CrossRef]
- Tao, X.; Li, Z.; Gong, Q.; Zhang, Y.; Jiang, P. Uncertainty Analysis of the Short-Arc Initial Orbit Determination. IEEE Access 2020, 8, 38045–38059. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Wang, X.; Zhu, J.; Wang, D. A Simplex Method for the Orbit Determination of Maneuvering Satellites. Sci. China Phys. Mech. Astron. 2018, 61, 024511. [Google Scholar] [CrossRef]
- Goff, G.M.; Black, J.T.; Beck, J.A. Orbit Estimation of a Continuously Thrusting Spacecraft Using Variable Dimension Filters. J. Guid. Control. Dyn. 2015, 38, 2407–2420. [Google Scholar] [CrossRef]
- Zhou, X.; Qin, T.; Meng, L. Maneuvering Spacecraft Orbit Determination Using Polynomial Representation. Aerospace 2022, 9, 257. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, W.; Chang, H. Real-Time On-Orbit Estimation Method for Microthruster Thrust Based on High-Precision Orbit Determination. Int. J. Aerosp. Eng. 2021, 2021, 7733495. [Google Scholar] [CrossRef]
- Liu, Y.; Song, Z.; Li, L. Tangential Low Thrust on Orbit Calibration Method for Circular Orbit Based on GNSS Precision Orbit Determination. Patent CN103940431A, 23 July 2014. [Google Scholar]
- Yu, J.; Lv, J.; Liu, W.; Tie, L.; Yang, L.; Lu, G.; Liang, Y.; Huang, J. On-Orbit High-Precision Calibration Method of Thruster Thrust Based on Angular Displacement Sensor. Patent CN109018433A, 18 December 2018. [Google Scholar]
- Zhang, H.; He, L.; Xuemai, G. On-orbit electric thruster calibration based on MME/KF algorithm. Spacecr. Environ. Eng. 2011, 4, 337–343. [Google Scholar]
- Wu, S.-F.; Steyn, W.H.; Bordany, R.E. In-Orbit Thruster Calibration Techniques and Experiment Results with UoSAT-12. Control. Eng. Pract. 2004, 12, 87–98. [Google Scholar] [CrossRef]
- Li, H.; Sun, Z.; Chen, X. On-Orbit Calibration Based on Second-Order Nonlinear Filtering. In Proceedings of the 2008 International Conference on Machine Learning and Cybernetics, Kunming, China, 12–15 July 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 2970–2975. [Google Scholar]
- Wiktor, P.J. On-Orbit Thruster Calibration. J. Guid. Control. Dyn. 1996, 19, 934–940. [Google Scholar] [CrossRef]
- Vallado, D.A. Fundamentals of Astrodynamics and Applications, 5th ed.; Space Technology Library; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Pirozhenko, A.V.; Maslova, A.I.; Vasilyev, V.V. About the influence of second zonal harmonic on the motion of satellite in almost circular orbits. Spacecr. Dyn. Control. 2019, 25, 3–11. [Google Scholar] [CrossRef]
- Bakhtiari, M.; Abbasali, E.; Daneshjoo, K. Minimum Cost Perturbed Multi-impulsive Maneuver Methodology to Accomplish an Optimal Deployment Scheduling for a Satellite Constellation. J. Astronaut. Sci. 2023, 70, 18. [Google Scholar] [CrossRef]
- Prussing, J.E. Primer Vector Theory and Applications. In Spacecraft Trajectory Optimization; Conway, B.A., Ed.; Cambridge University Press: Cambridge, UK, 2010; pp. 16–36. ISBN 978-0-521-51850-5. [Google Scholar]
- Abbasali, E.; Kosari, A.; Bakhtiari, M. Effects of oblateness of the primaries on natural periodic orbit-attitude behaviour of satellites in three body problem. Adv. Space Res. 2021, 68, 4379–4397. [Google Scholar] [CrossRef]
- NRLMSIS Atmosphere Model. Available online: https://kauai.ccmc.gsfc.nasa.gov/instantrun/nrlmsis/ (accessed on 22 August 2023).
- Guangqing, X.; Chang, L. Review and Prospect of Electric Propulsion Acceleration Technology. J. Astronaut. 2022, 43, 143–157. [Google Scholar]
- Bronshtein, I.N.; Semendyayev, K.A.; Musiol, G.; Mühlig, H. Handbook of Mathematics, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
Project | Parameter |
---|---|
Initial epoch time | 2023.04.02 04:46:39 UTC |
Initial orbit | |
Initial acceleration | |
Station coordinates | [−2852.90 km, 3399.95 km, 4565.25 km] |
Three body gravity | Sun, moon, and major planets: JPL DE405 |
Observation error (Gaussian distribution) | |
Tide | Solid tide: IERS Conventions 2003 |
Non-spherical gravitational field | Gravity model: EGM2008 Degree:21; order:21 |
Relativity | IERS Conventions 2003 |
Solar pressure | Shadow model: Dual Cone Light pressure coefficient: 1.00 Area–mass ratio: 0.02 m2/kg |
Atmospheric drag | Density model: Jacchia–Roberts Drag coefficient: 2.20 Area–mass ratio: 0.02 m2/kg |
Orbit Parameter | Simulation Value | Solution Result | Error |
---|---|---|---|
Tangential acceleration (m/s2) | 0.0001966 | 0.0001961 | 0.0000005 |
Normal acceleration (m/s2) | 0.0001135 | 0.0001106 | 0.0000029 |
Semi-major axis (km) | 6933.534519 | 6933.885632 | 0.351 |
Inclination (°) | 65.011 | 64.916 | 0.095 |
RAAN (°) | 14.372 | 13.629 | 0.743 |
Argument of latitude (°) | 28.728 | 27.894 | 0.834 |
Thrust | 1 N | 500 mN | 100 mN | 20 mN | 5 mN | 1 mN |
---|---|---|---|---|---|---|
Acceleration (m/s2) | 2 × 10−3 | 1 × 10−3 | 2 × 10−4 | 4 × 10−5 | 1 × 10−5 | 2 × 10−6 |
Simulation tangential acceleration (m/s2) | 1 × 10−3 | 5 × 10−4 | 1 × 10−4 | 2 × 10−5 | 5 × 10−6 | 1 × 10−6 |
Solution tangential acceleration (m/s2) | 1.000 × 10−3 | 5.000 × 10−4 | 0.999 × 10−4 | 2.033 × 10−5 | 4.645 × 10−6 | 0.486 × 10−6 |
Simulation normal acceleration (m/s2) | 1.732 × 10−3 | 8.660 × 10−4 | 1.732 × 10−4 | 3.464 × 10−5 | 8.660 × 10−6 | 1.732 × 10−6 |
Solution normal acceleration (m/s2) | 1.738 × 10−3 | 8.624 × 10−4 | 1.622 × 10−4 | 2.682 × 10−5 | 5.890 × 10−6 | 1.223 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Tao, X.; Li, Z. Initial Identification of Thrust and Orbit Elements for Continuous Thrust Spacecraft in Circular Orbit. Aerospace 2023, 10, 1012. https://doi.org/10.3390/aerospace10121012
Zhao S, Tao X, Li Z. Initial Identification of Thrust and Orbit Elements for Continuous Thrust Spacecraft in Circular Orbit. Aerospace. 2023; 10(12):1012. https://doi.org/10.3390/aerospace10121012
Chicago/Turabian StyleZhao, Shuailong, Xuefeng Tao, and Zhi Li. 2023. "Initial Identification of Thrust and Orbit Elements for Continuous Thrust Spacecraft in Circular Orbit" Aerospace 10, no. 12: 1012. https://doi.org/10.3390/aerospace10121012
APA StyleZhao, S., Tao, X., & Li, Z. (2023). Initial Identification of Thrust and Orbit Elements for Continuous Thrust Spacecraft in Circular Orbit. Aerospace, 10(12), 1012. https://doi.org/10.3390/aerospace10121012