Numerical Investigation of Transverse-Jet-Assisted Initiation of Oblique Detonation Waves in a Combustor
Abstract
:1. Introduction
2. Details of the Methodology
2.1. Geometry of an ODE Combustor
2.2. Mathematical Models and Numerical Algorithms
2.3. Cases
3. Initiation Characteristics of ODWs without Assistant Measures
3.1. ODW Initiation Characteristics in the Combustor at Different Maf
3.2. ODW Initiation Characteristics in the Combustor at Different Hf
4. ODW Initiation Assisted by a Transverse Jet
4.1. ODW Initiation at Low Maf Assisted by a Transverse Jet
4.1.1. The Transverse-Jet-Assisted Initiation Approach for Wide-Range-Maf Applications
4.1.2. Numerical Validations of Transverse-Jet-Assisted ODW Initiation at Low Maf
4.2. ODW Initiation at a High Hf Assisted by a Transverse Jet
4.2.1. The Transverse-Jet-Assisted Initiation Approach for Wide-Range-Hf Applications
4.2.2. Numerical Validations of Transverse-Jet-Assisted Detonation Initiation at High Hf
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
List of Symbols | |
dc | Upstream-extending distance of cowl’s leading edge (m). |
hc | Height of combustor (m). |
Hf | Flight altitude (m). |
J | Jet-to-crossflow momentum ratio. |
lc | Length of combustor (m). |
Lind | Ignition induction length (m). |
Ljet | Distance of jet downstream from wall’s leading edge (m). |
Ltran | Oblique shock wave to oblique detonation wave transition length (m). |
Maf | Flight Mach number. |
p0,jet | Total pressure of jet (Pa). |
pi | Inflow pressure (Pa). |
pref | Reference inflow pressure in baseline case (Pa). |
Ti | Inflow temperature (K). |
Tref | Reference inflow temperature in baseline case (K). |
Vi | Inflow velocity magnitude (m/s). |
Vjet | Velocity magnitude of jet (m/s). |
Vref | Reference inflow velocity magnitude in baseline case (m/s). |
Vs | Post-shock velocity magnitude (m/s). |
Wjet | Width of transverse jet (m). |
Δϕjet | Increment in total equivalence ratio by fuel jet. |
θi | Inclined angle of inlet wall (°). |
ρi | Inflow density (kg/m3). |
ρjet | Density of jet (kg/m3). |
ρs | Post-shock density (kg/m3). |
τign | Ignition delay time (s). |
Abbreviation | |
2-D | Two-dimensional. |
2nd-JSW | Secondary jet shock wave. |
2nd-RfSW | Secondary reflected shock wave. |
3-D | Three-dimensional. |
HLLC | Harten–Lax–van Leer contact. |
JSW | Jet shock wave. |
MS | Mach stem. |
NSW | Normal shock wave. |
ODE | Oblique detonation engine. |
ODW | Oblique detonation wave. |
OSW | Oblique shock wave. |
RANS | Reynolds-averaged Navier–Stokes. |
RaSW | Reattachment shock wave. |
RfSW | Reflected shock wave. |
SST | Shear-stress transport. |
SSW | Separated shock wave. |
TVD | Total variation diminishing. |
References
- Sziroczak, D.; Smith, H. A Review of Design Issues Specific to Hypersonic Flight Vehicles. Prog. Aerosp. Sci. 2016, 84, 1–28. [Google Scholar] [CrossRef]
- Liu, Q.; Baccarella, D.; Lee, T. Review of Combustion Stabilization for Hypersonic Airbreathing Propulsion. Prog. Aerosp. Sci. 2020, 119, 100636. [Google Scholar] [CrossRef]
- Mcclinton, C. High Speed/Hypersonic Aircraft Propulsion Technology Development. In Advances on Propulsion Technology for High-Speed Aircraft; RTO: Neuilly-sur-Seine, France, 2008. [Google Scholar]
- Oehlschlaeger, M.A. Grand Challenges in Aerospace Propulsion. Front. Aerosp. Eng. 2022, 1, 1027943. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, Z.; Liu, Y.; Wang, C.; Luo, C. Criteria for Hypersonic Airbreathing Propulsion and Its Experimental Verification. Chin. J. Aeronaut. 2021, 34, 94–104. [Google Scholar] [CrossRef]
- Rosato, D.A.; Thornton, M.; Sosa, J.; Bachman, C.; Goodwin, G.B.; Ahmed, K.A. Stabilized Detonation for Hypersonic Propulsion. Proc. Natl. Acad. Sci. USA 2021, 118, e2102244118. [Google Scholar] [CrossRef] [PubMed]
- Higgins, A.J. Ram Accelerators: Outstanding Issues and New Directions. J. Propuls. Power 2006, 22, 1170–1187. [Google Scholar] [CrossRef]
- Braun, E.M.; Lu, F.K.; Wilson, D.R.; Camberos, J.A. Airbreathing Rotating Detonation Wave Engine Cycle Analysis. Aerosp. Sci. Technol. 2013, 27, 201–208. [Google Scholar] [CrossRef]
- Wolański, P. Detonative Propulsion. Proc. Combust. Inst. 2013, 34, 125–158. [Google Scholar] [CrossRef]
- Dudebout, R.; Sislian, J.P.; Oppitz, R. Numerical Simulation of Hypersonic Shock-Induced Combustion Ramjets. J. Propuls. Power 1998, 14, 869–879. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, C.; Yuan, C.; Liu, Y.; Han, G.; Wang, C.; Jiang, Z. An Experimental Study of Formation of Stabilized Oblique Detonation Waves in a Combustor. Combust. Flame 2022, 237, 111868. [Google Scholar] [CrossRef]
- Han, X.; Liu, Y.; Zhang, Z.; Zhang, W.; Yuan, C.; Han, G.; Jiang, Z. Experimental Demonstration of Forced Initiation of Kerosene Oblique Detonation by an On-Wedge Trip in an ODE Model. Combust. Flame 2023, 258, 113102. [Google Scholar] [CrossRef]
- Sterling, J.; Cummings, E.; Ghorbanian, K.; Pratt, D.; Sobota, T.; Brock, N.; Brown, M.; Segall, J.; DeBarber, P. Oblique Detonation Wave Studies in the Caltech T-5 Shock Tunnel Facility. In Proceedings of the 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, VA, USA, 27–30 April 1998; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1998. [Google Scholar]
- Li, C.; Kailasanath, K.; Oran, E.S. Detonation Structures behind Oblique Shocks. Phys. Fluids 1994, 6, 1600–1611. [Google Scholar] [CrossRef]
- Viguier, C.; da Silva, L.F.F.; Desbordes, D.; Deshaies, B. Onset of Oblique Detonation Waves: Comparison between Experimental and Numerical Results for Hydrogen-Air Mixtures. Symp. Int. Combust. 1996, 26, 3023–3031. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, J.; Zhou, J. Design of High-Enthalpy Premixed Supersonic Heater and Experimental Study of Detonation. In Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, USA, 8–11 July 2007; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2007. [Google Scholar]
- Teng, H.H.; Jiang, Z.L. On the Transition Pattern of the Oblique Detonation Structure. J. Fluid Mech. 2012, 713, 659–669. [Google Scholar] [CrossRef]
- Teng, H.; Tian, C.; Zhang, Y.; Zhou, L.; Ng, H.D. Morphology of Oblique Detonation Waves in a Stoichiometric Hydrogen–Air Mixture. J. Fluid Mech. 2021, 913, A1. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, D.; Yao, S.; Wang, J. Analytical and Numerical Investigations of Wedge-Induced Oblique Detonation Waves at Low Inflow Mach Number. Combust. Sci. Technol. 2015, 187, 843–856. [Google Scholar] [CrossRef]
- Yang, P.; Teng, H.; Jiang, Z.; Ng, H.D. Effects of Inflow Mach Number on Oblique Detonation Initiation with a Two-Step Induction-Reaction Kinetic Model. Combust. Flame 2018, 193, 246–256. [Google Scholar] [CrossRef]
- Bian, J.; Zhou, L.; Teng, H. Structural and Thermal Analysis on Oblique Detonation Influenced by Different Forebody Compressions in Hydrogen-Air Mixtures. Fuel 2021, 286, 119458. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, Y.; Ng, H.D.; Teng, H. Numerical Investigation on the Initiation of Oblique Detonation Waves in Stoichiometric Acetylene–Oxygen Mixtures with High Argon Dilution. Combust. Flame 2019, 204, 391–396. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Y.; Teng, H.; Jiang, Z.; Ng, H.D. Numerical Study of Oblique Detonation Wave Initiation in a Stoichiometric Hydrogen-Air Mixture. Phys. Fluids 2015, 27, 096101. [Google Scholar] [CrossRef]
- Teng, H.; Ng, H.D.; Jiang, Z. Initiation Characteristics of Wedge-Induced Oblique Detonation Waves in a Stoichiometric Hydrogen-Air Mixture. Proc. Combust. Inst. 2017, 36, 2735–2742. [Google Scholar] [CrossRef]
- Fang, Y.; Hu, Z.; Teng, H. Numerical Investigation of Oblique Detonations Induced by a Finite Wedge in a Stoichiometric Hydrogen-Air Mixture. Fuel 2018, 234, 502–507. [Google Scholar] [CrossRef]
- Xiang, G.X.; Gao, X.; Tang, W.J.; Jie, X.Z.; Huang, X. Numerical Study on Transition Structures of Oblique Detonations with Expansion Wave from Finite-Length Cowl. Phys. Fluids 2020, 32, 056108. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Gao, S.F.; Xiang, G.X. Study on Initiation Mode of Oblique Detonation Induced by a Finite Wedge. Phys. Fluids 2021, 33, 016102. [Google Scholar] [CrossRef]
- Xiang, G.; Li, X.; Sun, X.; Chen, X. Investigations on Oblique Detonations Induced by a Finite Wedge in High Altitude. Aerosp. Sci. Technol. 2019, 95, 105451. [Google Scholar] [CrossRef]
- Maeda, S.; Kasahara, J.; Matsuo, A. Oblique Detonation Wave Stability around a Spherical Projectile by a High Time Resolution Optical Observation. Combust. Flame 2012, 159, 887–896. [Google Scholar] [CrossRef]
- Maeda, S.; Sumiya, S.; Kasahara, J.; Matsuo, A. Initiation and Sustaining Mechanisms of Stabilized Oblique Detonation Waves around Projectiles. Proc. Combust. Inst. 2013, 34, 1973–1980. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, Z.; Hu, Z.; Deng, X. Initiation of Oblique Detonation Waves Induced by a Blunt Wedge in Stoichiometric Hydrogen-Air Mixtures. Aerosp. Sci. Technol. 2019, 92, 676–684. [Google Scholar] [CrossRef]
- Gong, J.S.; Zhang, Y.; Pan, H.; Jia, B.; Meng, H.; Lin, X. Experimental Investigation on Initiation of Oblique Detonation Waves. In Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China, 6–9 March 2017; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2017. [Google Scholar]
- Qin, Q.; Zhang, X. A Novel Method for Trigger Location Control of the Oblique Detonation Wave by a Modified Wedge. Combust. Flame 2018, 197, 65–77. [Google Scholar] [CrossRef]
- Teng, H.; Zhang, Y.; Yang, P.; Jiang, Z. Oblique Detonation Wave Triggered by a Double Wedge in Hypersonic Flow. Chin. J. Aeronaut. 2022, 35, 176–184. [Google Scholar] [CrossRef]
- Bomjan, B.; Bhattrai, S.; Tang, H. Characterization of Induction and Transition Methods of Oblique Detonation Waves over Dual-Angle Wedge. Aerosp. Sci. Technol. 2018, 82–83, 394–401. [Google Scholar] [CrossRef]
- Xiang, G.; Zhang, Y.; Tu, Q.; Gao, Y.; Huang, X.; Peng, T. The Initiation Characteristics of Oblique Detonation Waves Induced by a Curved Surface. Aerosp. Sci. Technol. 2022, 128, 107743. [Google Scholar] [CrossRef]
- Xiong, H.; Qiu, R.; Han, X.; Yan, H.; You, Y. Investigating the Flow Characteristics and Thermodynamic Performance of Curved Detonation Waves. Phys. Fluids 2023, 35, 087119. [Google Scholar] [CrossRef]
- Han, X.; Zhang, W.-S.; Zhang, Z.-J.; Liu, Y.-F.; Jiang, Z.-L. Numerical Study of Oblique Detonation Waves Induced by a Bump. Tuijin Jishu/J. Propuls. Technol. 2022, 43, 185–196. [Google Scholar] [CrossRef]
- Xiang, G.; Zhang, Y.; Zhang, C.; Kou, Y. Study on Initiation Mechanism of Oblique Detonation Induced by Blunt Bump on Wedge Surface. Fuel 2022, 323, 124314. [Google Scholar] [CrossRef]
- Lei, Q.; Zhao, X.; Zheng, J.; He, J.; Wang, K.; Fan, W. Role of Overdriven State of Ignition Wave in Pre-Detonators on Detonation Transition Modes in a Flat Chamber. Aerosp. Sci. Technol. 2021, 115, 106771. [Google Scholar] [CrossRef]
- Yang, C.; Wu, X.; Ma, H.; Peng, L.; Gao, J. Experimental Research on Initiation Characteristics of a Rotating Detonation Engine. Exp. Therm. Fluid Sci. 2016, 71, 154–163. [Google Scholar] [CrossRef]
- Han, X.; Zhou, J.; Lin, Z.-Y. Experimental Investigations of Detonation Initiation by Hot Jets in Supersonic Premixed Flows. Chin. Phys. B 2012, 21, 124702. [Google Scholar] [CrossRef]
- Cai, X.; Liang, J.; Lin, Z.; Deiterding, R.; Liu, Y. Parametric Study of Detonation Initiation Using a Hot Jet in Supersonic Combustible Mixtures. Aerosp. Sci. Technol. 2014, 39, 442–455. [Google Scholar] [CrossRef]
- Cai, X.; Liang, J.; Deiterding, R. Numerical Investigation on Detonation Control Using a Pulse Hot Jet in Supersonic Combustible Mixture. Combust. Sci. Technol. 2016, 188, 1674–1690. [Google Scholar] [CrossRef]
- Yao, J.; Lin, Z. Numerical Investigation of Jet-Wedge Combinatorial Initiation for Oblique Detonation Wave in Supersonic Premixed Mixture. Phys. Fluids 2023, 35, 026101. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Wen, C. Mechanisms of the Destabilized Mach Reflection of Inviscid Oblique Detonation Waves before an Expansion Corner. J. Fluid Mech. 2022, 940, A29. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, C.; Zhang, W.; Liu, Y.; Jiang, Z. Formation of Stabilized Oblique Detonation Waves in a Combustor. Combust. Flame 2021, 223, 423–436. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, K.; Zhang, W.; Han, X.; Liu, Y.; Jiang, Z. Numerical Investigation of a Mach 9 Oblique Detonation Engine with Fuel Pre-Injection. Aerosp. Sci. Technol. 2020, 105, 106054. [Google Scholar] [CrossRef]
- Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- McBride, B.J.; Zehe, M.J.; Gordon, S. NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species; National Aeronautics and Space Administration: Washington, DC, USA, 2002.
- Wilson, G.J.; MacCormack, R.W. Modeling Supersonic Combustion Using a Fully Implicit Numerical Method. AIAA J. 1992, 30, 1008–1015. [Google Scholar] [CrossRef]
- Wu, K. Investigation on the Flame Stabilization Modes and Chemical Mechanism Reduction in Supersonic Combustion. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2018. [Google Scholar]
- Choi, J.-Y.; Jeung, I.-S.; Yoon, Y. Computational Fluid Dynamics Algorithms for Unsteady Shock-Induced Combustion, Part 1: Validation. AIAA J. 2000, 38, 1179–1187. [Google Scholar] [CrossRef]
- Teng, H.; Liu, S.; Zhang, Z. Unsteady Combustion Mode with a Super-High Frequency Induced by a Curved Shock. Phys. Fluids 2020, 32, 116101. [Google Scholar] [CrossRef]
- Karl, S.; Hannemann, K.; Mack, A.; Steelant, J. CFD Analysis of the HyShot II Scramjet Experiments in the HEG Shock Tunnel. In Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, OH, USA, 28 April–1 May 2008; American Institute of Aeronautics and Astronautics: Dayton, OH, USA, 2008. [Google Scholar]
- Chapuis, M.; Fedina, E.; Fureby, C.; Hannemann, K.; Karl, S.; Martinez Schramm, J. A Computational Study of the HyShot II Combustor Performance. Proc. Combust. Inst. 2013, 34, 2101–2109. [Google Scholar] [CrossRef]
- Chan, J.; Sislian, J.P.; Alexander, D. Numerically Simulated Comparative Performance of a Scramjet and Shcramjet at Mach 11. J. Propuls. Power 2010, 26, 1125–1134. [Google Scholar] [CrossRef]
- Chakravarthy, S. A Unified-Grid Finite Volume Formulation for Computational Fluid Dynamics. Int. J. Numer. Methods Fluids 1999, 31, 309–323. [Google Scholar] [CrossRef]
- Peroomian, O.; Chakravarthy, S.; Goldberg, U.; Peroomian, O.; Chakravarthy, S.; Goldberg, U. A “grid-Transparent” Methodology for CFD. In Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–10 January 1997; Aerospace Sciences Meetings; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1997. [Google Scholar]
Cases No. | Maf | Hf (km) | Ti (K) | pi (kPa) | Vi (m/s) | θi | dc (mm) | hc (mm) | Δϕjet | p0, jet (kPa) | J |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 13 | 30 | 795.4 | 38.25 | 3775 | 16° | 73 | 60 | – | – | – |
2 | 12 | 30 | 731.0 | 32.17 | 3480 | 16° | 73 | 60 | – | – | – |
3 | 11 | 30 | 670.0 | 26.74 | 3184 | 16° | 73 | 60 | – | – | – |
4 | 10 | 30 | 612.4 | 21.94 | 2889 | 16° | 73 | 60 | – | – | – |
5 | 9 | 30 | 558.5 | 17.75 | 2593 | 16° | 73 | 60 | – | – | – |
6 | 8 | 30 | 508.2 | 14.15 | 2296 | 16° | 73 | 60 | – | – | – |
7 | 11 | 30 | 670.0 | 26.74 | 3184 | 16° | 73 | 60 | 0.05 | 878.5 | 0.267 |
8 | 10 | 30 | 612.4 | 21.94 | 2889 | 16° | 73 | 60 | 0.05 | 715.3 | 0.309 |
9 | 9 | 30 | 558.5 | 17.75 | 2593 | 16° | 73 | 60 | 0.05 | 569.7 | 0.363 |
10 | 8 | 30 | 508.2 | 14.15 | 2296 | 16° | 73 | 60 | 0.075 | 663.0 | 0.656 |
Cases No. | Maf | Hf (km) | Ti (K) | pi (kPa) | Vi (m/s) | θi | dc (mm) | hc (mm) | Δϕjet | p0,jet (kPa) | J |
---|---|---|---|---|---|---|---|---|---|---|---|
11 | 9 | 30 | 855.1 | 43.96 | 2466 | 25° | 50 | 60 | – | – | – |
12 | 9 | 41 | 855.1 | 8.79 | 2466 | 25° | 50 | 60 | – | – | – |
13 | 9 | 47 | 855.1 | 4.40 | 2466 | 25° | 50 | 60 | – | – | – |
14 | 9 | 52 | 855.1 | 2.20 | 2466 | 25° | 50 | 60 | – | – | – |
15 | 9 | 57 | 855.1 | 1.10 | 2466 | 25° | 50 | 60 | – | – | – |
16 | 9 | 57 | 855.1 | 1.10 | 2466 | 25° | 50 | 60 | 0.2 | 42.50 | 1.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Jiang, Z. Numerical Investigation of Transverse-Jet-Assisted Initiation of Oblique Detonation Waves in a Combustor. Aerospace 2023, 10, 1033. https://doi.org/10.3390/aerospace10121033
Zhang Z, Jiang Z. Numerical Investigation of Transverse-Jet-Assisted Initiation of Oblique Detonation Waves in a Combustor. Aerospace. 2023; 10(12):1033. https://doi.org/10.3390/aerospace10121033
Chicago/Turabian StyleZhang, Zijian, and Ziqi Jiang. 2023. "Numerical Investigation of Transverse-Jet-Assisted Initiation of Oblique Detonation Waves in a Combustor" Aerospace 10, no. 12: 1033. https://doi.org/10.3390/aerospace10121033
APA StyleZhang, Z., & Jiang, Z. (2023). Numerical Investigation of Transverse-Jet-Assisted Initiation of Oblique Detonation Waves in a Combustor. Aerospace, 10(12), 1033. https://doi.org/10.3390/aerospace10121033