A Comprehensive Study on the Aerodynamic Characteristics of Electrically Controlled Rotor Using Lattice Boltzmann Method
Abstract
:1. Introduction
2. ECR Aerodynamic Analysis Model Based on the Lattice Boltzmann Method
2.1. Lattice Boltzmann Method
2.2. Turbulence Modeling
2.3. Establishment of the ECR Aerodynamic Analysis Model
3. Numerical Results and Analysis
3.1. Validation of Caradonna–Tung Rotor in Hover
3.2. Validation of 2MRTS Rotor in Forward Flight
3.3. Analysis of ECR Aerodynamic Characteristics in Hover
3.4. Analysis of ECR Aerodynamic Characteristics in Forward Flight
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ormiston, R.A.; Rutkowski, M. Aeroelastic considerations for rotorcraft primary control with on-blade elevons. In Proceedings of the American Helicopter Society 57th Annual Forum Proceedings, Washington, DC, USA, 9–11 May 2001. [Google Scholar]
- Shen, J.; Chopra, I. Swashplateless Helicopter Rotor with Trailing-Edge Flaps. J. Aircr. 2004, 41, 208–214. [Google Scholar] [CrossRef]
- Kessler, C. Active rotor control for helicopters: Individual blade control and swashplateless rotor designs. CEAS Aeronaut. J. 2011, 1, 23–54. [Google Scholar] [CrossRef]
- Viswamurthy, S.R.; Ganguli, R. An optimization approach to vibration reduction in helicopter rotors with multiple active trailing edge flaps. Aerosp. Sci. Technol. 2004, 8, 185–194. [Google Scholar] [CrossRef]
- Ma, J.; Lu, Y.; Su, T.; Guan, S. Experimental research of active vibration and noise control of electrically controlled rotor. Chin. J. Aeronaut. 2021, 34, 106–118. [Google Scholar] [CrossRef]
- Patt, D.; Liu, L.; Friedmann, P.P. Simultaneous Vibration and Noise Reduction in Rotorcraft Using Aeroelastic Simulation. J. Am. Helicopter Soc. 2006, 51, 127–140. [Google Scholar] [CrossRef]
- Ravichandran, K.; Chopra, I.; Wake, B.E.; Hein, B. Trailing-Edge Flaps for Rotor Performance Enhancement and Vibration Reduction. J. Am. Helicopter Soc. 2013, 58, 1–13. [Google Scholar] [CrossRef]
- Liu, L.; Friedmann, P.P.; Kim, I.; Bernstein, D.S. Rotor Performance Enhancement and Vibration Reduction in Presence of Dynamic Stall Using Actively Controlled Flaps. J. Am. Helicopter Soc. 2008, 53, 338–350. [Google Scholar] [CrossRef]
- Shen, J.; Yang, M.; Chopra, I. Swashplateless Helicopter Rotor System with Trailing-Edge Flaps for Flight and Vibration Controls. J. Aircr. 2006, 43, 346–352. [Google Scholar] [CrossRef]
- Shen, J.; Chopra, I. A Parametric Design Study for a Swashplateless Helicopter Rotor with Trailing-Edge Flaps. J. Am. Helicopter Soc. 2004, 49, 43–53. [Google Scholar] [CrossRef]
- Shen, J.; Chopra, I. Aeroelastic Modeling of Trailing-Edge-Flap Helicopter Rotors Including Actuator Dynamics. J. Aircr. 2004, 41, 1465–1472. [Google Scholar] [CrossRef]
- Falls, J. Design and Performance Prediction of Swashplateless Helicopter Rotors with Trailing Edge Flaps and Tabs; University of Maryland: College Park, MD, USA, 2010. [Google Scholar]
- Bagai, A. Contributions to the Mathematical Modeling of Rotor Flow Fields Using a Pseudo-Implicit Free-Wake Analysis; University of Maryland: College Park, MD, USA, 1995. [Google Scholar]
- Falls, J.; Chopra, I. Piezobimorph actuated servotab for controlling a trailing edge flap. In Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference Proceedings, Austin, TX, USA, 18–21 April 2005. [Google Scholar] [CrossRef]
- Su, T.; Lu, Y.; Ma, J.; Guan, S. Aerodynamic characteristics analysis of electrically controlled rotor based on viscous vortex particle method. Aerosp. Sci. Technol. 2020, 97, 105645. [Google Scholar] [CrossRef]
- Grunau, D.; Chen, S.; Eggert, K. A lattice Boltzmann model for multiphase fluid flows. Phys. Fluids A Fluid Dyn. 1993, 5, 2557–2562. [Google Scholar] [CrossRef]
- Gunstensen, A.K.; Rothman, D.H.; Zaleski, S.; Zanetti, G. Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 1991, 43, 4320–4327. [Google Scholar] [CrossRef]
- Raabe, D. Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering. Model. Simul. Mater. Sci. Eng. 2004, 12, R13–R46. [Google Scholar] [CrossRef]
- Romani, G.; Casalino, D. Rotorcraft blade-vortex interaction noise prediction using the Lattice-Boltzmann method. Aerosp. Sci. Technol. 2019, 88, 147–157. [Google Scholar] [CrossRef]
- van der Velden, W.; Romani, G.; Casalino, D. Validation and insight of a full-scale S-76 helicopter rotor using the Lattice-Boltzmann Method. Aerosp. Sci. Technol. 2021, 118, 107007. [Google Scholar] [CrossRef]
- Thibault, S.; Holman, D.; Garcia, S.; Trapani, G. CFD simulation of a quad-rotor UAV with rotors in motion explicitly modeled using an LBM approach with adaptive refinement. In Proceedings of the 55th AIAA Aerospace Sciences Meeting Proceedings, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar] [CrossRef]
- Bhatnagar, P.L.; Gross, E.P.; Krook, M. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems. Phys. Rev. B 1954, 94, 511–525. [Google Scholar] [CrossRef]
- Geier, M.; Greiner, A.; Korvink, J.G. A factorized central moment lattice Boltzmann method. Eur. Phys. J. Spec. Top. 2009, 171, 55–61. [Google Scholar] [CrossRef]
- Premnath, K.N.; Banerjee, S. Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments. Phys. Rev. E 2009, 80, 036702. [Google Scholar] [CrossRef]
- Chen, S.; Doolen, G.D. Lattice boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar] [CrossRef]
- Qian, Y.H.; D’Humières, D.; Lallemand, P. Lattice BGK Models for Navier-Stokes Equation. Europhys. Lett. 1992, 17, 479–484. [Google Scholar] [CrossRef]
- Suga, K.; Kuwata, Y.; Takashima, K.; Chikasue, R. A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows. Comput. Math. Appl. 2015, 69, 518–529. [Google Scholar] [CrossRef]
- Bao, Y.B.; Meskas, J. Lattice Boltzmann Method for Fluid Simulations; Department of Mathematics, Courant Institute of Mathematical Sciences, New York University: New York, NY, USA, 2011; Volume 44. [Google Scholar]
- Ducros, F.; Nicoud, F.; Poinsot, T. Wall-adapting local eddy-viscosity models for simulations in complex geometries. Numer. Methods Fluid Dyn. 1998, 6, 293–299. [Google Scholar]
- Caradonna, F.X.; Tung, C. Experimental and analytical studies of a model helicopter rotor in hover. In Proceedings of the European Rotorcraft and Powered Lift Aircraft Forum, Bristol, UK, 16–19 September 1980. No. A-8332. [Google Scholar]
- Whitehouse, G.R. Investigation of Hybrid Grid–Based Computational Fluid Dynamics Methods for Rotorcraft Flow Analysis. J. Am. Helicopter Soc. 2011, 56, 1–10. [Google Scholar] [CrossRef]
- Elliott, J.W.; Althoff, S.L.; Sailey, R.H. Inflow Measurements Made with a Laser Velocimeter on a Helicopter Model in Forward Flight; volume 1: Rectangular planform blades at an advance ration of 0.15; No. NASA-TM-100541; NASA: Washington, DC, USA, 1988. [Google Scholar]
- Lee, B.S.; Choi, J.H.; Kwon, O.J. Numerical Simulation of Free-Flight Rockets Air-Launched from a Helicopter. J. Aircr. 2011, 48, 1766–1775. [Google Scholar] [CrossRef]
- Kenyon, A.R.; Brown, R.E. Wake Dynamics and Rotor-Fuselage Aerodynamic Interactions. J. Am. Helicopter Soc. 2009, 54, 12003. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Rotor radius | 1.143 m |
Blade chord Blade airfoil section Blade twist Blade collective pitch Root cutout Rotor rotational speed Number of blades | 0.1905 m NACA0012 0° 8° 0.188 m 1250 rpm 2 |
Method | = 8° | CPU Time/h | Computation Platform |
---|---|---|---|
LBM-Coarse grid | 4.3% | 15 | 64 Cores |
LBM-Fine grid CFD-Fine grid | 1.2% 2.3% | 36 64 | 64 Cores 64 Cores |
Blade Pre-Index Angle/° | Flap Collective Pitch/° | Blade Collective Pitch/° | |
---|---|---|---|
ECR | 4 | −10.46 | 9.46 |
ECR Conventional rotor | 12 | 4.96 | 7.41 7.92 |
Advance Ratios | Collective Deflection/° | Lateral Cyclic Deflection/° | Longitudinal Cyclic Deflection/° |
---|---|---|---|
0.1 | −2.39 | −4.22 | 4.17 |
0.2 | −2.43 | −2.19 | 6.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Su, T. A Comprehensive Study on the Aerodynamic Characteristics of Electrically Controlled Rotor Using Lattice Boltzmann Method. Aerospace 2023, 10, 996. https://doi.org/10.3390/aerospace10120996
Wang L, Su T. A Comprehensive Study on the Aerodynamic Characteristics of Electrically Controlled Rotor Using Lattice Boltzmann Method. Aerospace. 2023; 10(12):996. https://doi.org/10.3390/aerospace10120996
Chicago/Turabian StyleWang, Lingzhi, and Taoyong Su. 2023. "A Comprehensive Study on the Aerodynamic Characteristics of Electrically Controlled Rotor Using Lattice Boltzmann Method" Aerospace 10, no. 12: 996. https://doi.org/10.3390/aerospace10120996
APA StyleWang, L., & Su, T. (2023). A Comprehensive Study on the Aerodynamic Characteristics of Electrically Controlled Rotor Using Lattice Boltzmann Method. Aerospace, 10(12), 996. https://doi.org/10.3390/aerospace10120996