Influence of Non-Uniform Bluntness on Aerodynamic Performance and Aerothermal Characteristics of Waverider
Abstract
:1. Introduction
2. Model Introduction
3. Numerical Method Validation and Grid Convergence Tests
4. Aerothermal Characteristics and Aerodynamic Performance of Blunt Waverider
4.1. Flow-Field Comparison
4.2. Effects of Angle of Attack
4.3. Effects of Flight Altitudes
4.4. Effects of Mach Numbers
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meng, Y.-S.; Yan, L.; Huang, W.; Zhao, Z.-T. Coupled investigation on drag and heat flux reduction over spiked waverider with a wide-speed range. Acta Astronaut. 2021, 182, 498–516. [Google Scholar] [CrossRef]
- Zhang, T.; Yan, X.; Huang, W.; Che, X.; Wang, Z.; Lu, E. Design and analysis of the air-breathing aircraft with the full-body wave-ride performance. Aerosp. Sci. Technol. 2021, 119, 107133. [Google Scholar] [CrossRef]
- Liu, C.; Bai, P. Mathematical Expression of Geometric Relationship in Osculating-Cone Waverider Design. J. Aircr. 2021, 58, 858–866. [Google Scholar]
- Liu, C.; Bai, P. Effect of curvature distribution on customized-planform waverider. Aerosp. Sci. Technol. 2021, 109, 106422. [Google Scholar] [CrossRef]
- Takashima, N.; Lewis, M.J. Navier-Stokes computation of a viscous optimized waverider. J. Spacecr. Rocket. 1994, 31, 383–391. [Google Scholar] [CrossRef]
- Mangin, B.; Benay, R.; Chanetz, B.; Chpoun, A. Optimization of Viscous Waveriders Derived from Axisymmetric Power-Law Blunt Body Flows. J. Spacecr. Rocket. 2006, 43, 990–998. [Google Scholar] [CrossRef]
- Li, S.B.; Luo, S.B.; Huang, W.; Wang, Z.G. Influence of the connection section on the aerodynamic performance of the tandem waverider in a wide-speed range. Aerosp. Sci. Technol. 2013, 30, 50–65. [Google Scholar] [CrossRef]
- Ding, F.; Liu, J.; Shen, C.-B.; Huang, W. Novel approach for design of a waverider vehicle generated from axisymmetric supersonic flows past a pointed von Karman ogive. Aerosp. Sci. Technol. 2015, 42, 297–308. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Q.; Bai, P.; Zhou, W. Planform-customized waverider design integrating with vortex effect. Aerosp. Sci. Technol. 2019, 86, 438–443. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Ding, F.; Li, K.; Xia, Z. Novel Osculating Flowfield Methodology for Hypersonic Waverider Vehicles Based on Variable Shock Angle. J. Aerosp. Eng. 2018, 31, 04018043.1–04018043.12. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Ding, F.; Xia, Z. Novel methodology for wide-ranged multistage morphing waverider based on conical theory. Acta Astronaut. 2017, 140, 362–369. [Google Scholar] [CrossRef]
- Li, G.; Cui, K.; Xu, Y.; Wang, H.; Yang, J.; Xu, X. Experimental investigation of a hypersonic I-shaped configuration with a waverider compression surface. Sci. China Phys. Mech. Astron. 2020, 63, 254721. [Google Scholar] [CrossRef]
- Cui, K.; Zhao, D.; Yang, G. Waverider configurations derived from general conical flowfields. Acta Mech. Sin. 2007, 23, 247–255. [Google Scholar] [CrossRef]
- Liu, J.X.; Hou, Z.X.; Chen, X.Q.; Zhang, J.T. Experimental and numerical study on the aero-heating characteristics of blunted waverider. Appl. Therm. Eng. 2013, 51, 301–314. [Google Scholar] [CrossRef]
- Gillum, M.J.; Lewis, M.J. Experimental Results on a Mach 14 Waverider with Blunt Leading Edges. J. Aircr. 1997, 34, 296. [Google Scholar] [CrossRef]
- Chen, X.Q.; Hou, Z.X.; Liu, J.X.; Gao, X.Z. Bluntness impact on performance of waverider. Comput. Fluids 2011, 48, 30–43. [Google Scholar] [CrossRef]
- Zhao, Z.; Song, W.; Xiao, Y. Numerical Simulation on Off-Design Performance of Hypersonic Cone-Derived Waverider. Flight Dyn. 2009, 27, 47–50. [Google Scholar]
- Corda, S.; Anderson, J. Viscous optimized hypersonic waveriders designed from axisymmetric flow fields. In Proceedings of the Aerospace Sciences Meeting, Reno, NV, USA, 11–14 January 2013. [Google Scholar]
- Qu, Z.; Xiao, H.; Lv, M.; Li, G.; Kai, C. Numerical study on aerodynamic performance of waverider with a new bluntness method. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2021, 235, 1225–1233. [Google Scholar] [CrossRef]
- Tincher, D.J.; Burnett, D.W. Hypersonic waverider test vehicle—A logical next step. J. Spacecr. Rocket. 1994, 31, 392–399. [Google Scholar] [CrossRef]
- Santos, W. Bluntness Impact on Lift-to-Drag Ratio of Hypersonic Wedge Flow. J. Spacecr. Rocket. 2009, 46, 329–339. [Google Scholar] [CrossRef]
- Pan, J.; Yan, C.; Geng, Y.; Wu, J. Aerothermodynamics of the Waveriders Applying Artificially Blunted Leading Edge Concept. In Proceedings of the Aiaa Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Fu, X.; Liu, J.; Ding, F.; Wang, S.; Dou, T. A Novel Method for Blunting the Leading Edge of Waverider with Specified Curvature. Int. J. Aerosp. Eng. 2020, 2020, 8885062. [Google Scholar] [CrossRef]
- Lees, L. Laminar Heat Transfer Over Blunt-Nosed Bodies at Hypersonic Flight Speeds. J. Jet Propuls. 1956, 26, 259–269. [Google Scholar] [CrossRef]
- Rose, P.H.; Stark, W.I. Stagnation Point Heat-Transfer Measurements in Dissociated Air. J. Aerosp. Sci. 1958, 25, 86–97. [Google Scholar] [CrossRef]
- Rose, P.H.; Stankevics, J.O. Stagnation point heat transfer measurements in partially ionized air. AIAA J. 1963, 1, 2752–2763. [Google Scholar] [CrossRef]
- Cui, K.; Hu, S. Aerothermal Shape Optimization of Hypersonic Vehicle Leading Edge by Using Genetic Algorithm. In Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, TX, USA, 7–10 January 2013. [Google Scholar]
- Miller, C.G., III. Experimental and predicted heating distributions for biconics at incidence in air at Mach 10. Nasa Sti/Recon Tech. Rep. 1984, 85, 12313. [Google Scholar]
- Pan, S.; Feng, D.H.; Ding, G.H.; Tian, Z.Y.; Yang, Y.M.; Li, H. Grid Dependency and Convergence of Hypersonic Aerothermal Simulation. Hangkong Xuebao/Acta Aeronaut. Et Astronaut. Sin. 2010, 31, 493–499. [Google Scholar]
Type | Value | Blunt Diameter/Height |
---|---|---|
Angle of attack (degrees) | 0 (base), 5, 10, 15, 20 | 4, 10, 20 |
Flight altitude (km) | 15, 20, 25 (base), 30, 35 | |
Mach number | 2, 4, 6 (base), 8, 10 |
Number | Near-Wall Size/mm | Qmax/(W/m2) | Grid Numbers |
---|---|---|---|
1 | D/2 × 10−2 | 3.57 × 106 | 1.88 × 106 |
2 | D/2 × 10−3 | 3.97 × 106 | 1.88 × 106 |
3 | D/2 × 10−4 | 4.04 × 106 | 1.88 × 106 |
4 | D × 10−5 | 4.15 × 106 | 1.88 × 106 |
5 | D × 10−5 | 4.12 × 106 | 3.35 × 106 |
Diameter/Height | Blunt Profile | Mach Numbers | ||||
---|---|---|---|---|---|---|
2 | 4 | 6 | 8 | 10 | ||
4 mm | Circular | 0.83 × 10+5 | 1.08 × 10+6 | 4.17 × 10+6 | 1.03 × 10+7 | 2.06 × 10+7 |
Non-uniform | 0.70 × 10+5 | 0.89 × 10+6 | 3.49 × 10+6 | 0.87 × 10+7 | 1.74 × 10+7 | |
Reduced by | +16% | +18% | +17% | +16% | +16% | |
10 mm | Circular | 0.52 × 10+5 | 0.71 × 10+6 | 2.71 × 10+6 | 0.69 × 10+7 | 1.36 × 10+7 |
Non-uniform | 0.43 × 10+5 | 0.59 × 10+6 | 2.29 × 10+6 | 0.57 × 10+7 | 1.13 × 10+7 | |
Reduced by | +17% | +17% | +16% | +17% | +17% | |
20 mm | Circular | 0.37 × 10+5 | 0.52 × 10+6 | 2.02 × 10+6 | 0.50 × 10+7 | 1.01 × 10+7 |
Non-uniform | 0.31 × 10+5 | 0.43 × 10+6 | 1.72 × 10+6 | 0.42 × 10+7 | 0.84 × 10+7 | |
Reduced by | +16% | +16% | +15% | +16% | +17% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Z.; Wang, W.; Xiao, H.; Xiao, Y.; Li, G.; Cui, K. Influence of Non-Uniform Bluntness on Aerodynamic Performance and Aerothermal Characteristics of Waverider. Aerospace 2023, 10, 205. https://doi.org/10.3390/aerospace10030205
Qu Z, Wang W, Xiao H, Xiao Y, Li G, Cui K. Influence of Non-Uniform Bluntness on Aerodynamic Performance and Aerothermal Characteristics of Waverider. Aerospace. 2023; 10(3):205. https://doi.org/10.3390/aerospace10030205
Chicago/Turabian StyleQu, Zhipeng, Wanyu Wang, Houdi Xiao, Yao Xiao, Guangli Li, and Kai Cui. 2023. "Influence of Non-Uniform Bluntness on Aerodynamic Performance and Aerothermal Characteristics of Waverider" Aerospace 10, no. 3: 205. https://doi.org/10.3390/aerospace10030205
APA StyleQu, Z., Wang, W., Xiao, H., Xiao, Y., Li, G., & Cui, K. (2023). Influence of Non-Uniform Bluntness on Aerodynamic Performance and Aerothermal Characteristics of Waverider. Aerospace, 10(3), 205. https://doi.org/10.3390/aerospace10030205