Criticality for Oblique Detonation Waves Induced by a Finite Wedge in a Hydrogen–Air Mixture
Abstract
:1. Introduction
2. Physical and Numerical Models
2.1. Physical Model
2.2. Numerical Method
3. Results and Discussion
3.1. Resolution Study
3.2. Effects of Expansion Waves on ODWs
3.3. Initiation Criterion of ODWs for Finite Wedges
3.4. Verification of the Initiation Criterion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kailasanath, K. Recent developments in the research on pulse detonation engines. AIAA J. 2003, 41, 145–159. [Google Scholar] [CrossRef]
- Wokanski, P. Detonation propulsion. Proc. Combust. Inst. 2013, 34, 125–158. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, K.; Zhang, W.; Han, X.; Liu, Y.; Jiang, Z. Numerical investigation of a Mach 9 oblique detonation engine with fuel pre-injection. Aerosp. Sci. Technol. 2020, 105, 106054. [Google Scholar] [CrossRef]
- Ma, J.Z.; Zhang, S.; Luan, M.; Wang, J. Experimental investigation on delay time phenomenon in rotating detonation engine. Aerosp. Sci. Technol. 2019, 88, 395–404. [Google Scholar] [CrossRef]
- Pratt, D.T.; Humphrey, J.W.; Glenn, D.E. Morphology of standing oblique detonation waves. J. Propuls. Power 1991, 7, 837–845. [Google Scholar] [CrossRef]
- Grismer, M.J.; Powers, J.M. Numerical prediction of oblique detonation stability boundaries. Shock Waves 1996, 6, 147–156. [Google Scholar] [CrossRef]
- Powers, J.M.; Gonthier, K.A. Reaction zone structure for strong, weak overdriven, and weak underdriven oblique detonations. Phys. Fluids 1992, 4, 2082–2089. [Google Scholar] [CrossRef]
- Powers, J.M.; Stewart, D.S. Approximate solutions for oblique detonations in the hypersonic limit. AIAA J. 1992, 30, 726–736. [Google Scholar] [CrossRef]
- Morris, C.I.; Kamel, M.R.; Hanson, R.K. Shock-induced combustion in high-speed wedge flows. Proc. Combust. Inst. 1998, 27, 2157–2164. [Google Scholar] [CrossRef]
- Li, C.; Kailasanath, K.; Oran, E.S. Detonation structures behind oblique shocks. Phys. Fluids 1994, 4, 1600–1611. [Google Scholar] [CrossRef]
- Vlasenko, V.V.; Sabelńikov, V.A. Numerical simulation of inviscid flows with hydrogen combustion behind shock waves and in detonation waves. Combust. Explos. Shock Wave 1995, 31, 376–389. [Google Scholar] [CrossRef]
- Viguier, C.; da Silva, L.F.F.; Desbordes, D.; Deshaies, B. Onset of oblique detonation waves: Comparison between experimental and numerical results for hydrogen-air mixtures. Symp. (Int.) Combust. 1996, 26, 3023–3031. [Google Scholar] [CrossRef]
- Broda, J.C. An Experimental Study of Oblique Detonation Waves. Ph.D. Thesis, Connecticut University, Storrs, CT, USA, 1993. [Google Scholar]
- da Silva, L.F.F.; Deshales, B. Stabilization of an oblique detonation wave by a wedge: A parameter numerical study. Combust. Flame 2013, 121, 152–166. [Google Scholar] [CrossRef]
- Teng, H.H.; Jiang, Z.L. On the transition pattern of the oblique detonation structure. J. Fluid Mech. 2012, 713, 659–669. [Google Scholar] [CrossRef]
- Wang, A.F.; Zhao, W.; Jiang, Z.L. The criterion of the existence or inexistence of transverse shock wave at wedge supported oblique detonation wave. Acta Mech. Sin. 2011, 27, 611–619. [Google Scholar] [CrossRef]
- Miao, S.; Zhou, J.; Liu, S.; Cai, X. Formation mechanism and characteristics of transition patterns in oblique detonations. Acta Astronaut. 2018, 142, 121–129. [Google Scholar] [CrossRef]
- Qin, Q.Y.; Zhang, X.B. Study on the transition patterns of the oblique detonation wave with varying temperature of the hydrogen-air mixture. Fuel 2020, 274, 117827. [Google Scholar] [CrossRef]
- Shi, X.; Xie, H.; Zhou, L.; Zhang, Y. A theoretical criterion on the initiation type of oblique detonation waves. Acta Astronaut. 2022, 190, 342–348. [Google Scholar] [CrossRef]
- Teng, H.H.; Zhang, Y.N.; Jiang, Z.L. Numerical investigation on the induction zone structure of the oblique detonation waves, Comput. Fluids 2014, 95, 127–131. [Google Scholar]
- Liu, Y.; Wu, D.; Yao, S.; Wang, J. Analytical and numerical investigations of wedge-induced oblique detonation waves at low inflow Mach number. Combust. Sci. Technol. 2015, 187, 843–856. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, D.; Wang, J.-P. Structure of an oblique detonation wave induced by a wedge. Shock Waves 2016, 26, 161–168. [Google Scholar] [CrossRef]
- Yang, P.F.; Teng, H.H.; Jiang, Z.L.; Dick, N.H. Effects of inflow Mach number on oblique detonation initiation with a two-step induction-reaction kinetic model. Combust. Flame 2018, 193, 246–256. [Google Scholar] [CrossRef]
- Yang, L.; Yue, L.; Zhang, Q.; Zhang, X. Numerical study on the shock/combustion interaction of oblique detonation waves. Aerosp. Sci. Technol. 2020, 104, 105938. [Google Scholar] [CrossRef]
- Teng, H.; Tian, C.; Zhang, Y.; Zhou, L.; Ng, H.D. Morphology of oblique detonation wave in a stoichiometric hydrogen-air mixture. J. Fluid Mech. 2021, 913, A1. [Google Scholar] [CrossRef]
- Teng, H.; Ng, H.D.; Yang, P.; Wang, K. Near-field relaxation subsequent to the onset of oblique detonations with a two-step kinetic model. Phys. Fluids 2021, 33, 096106. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Li, G.X.; Wang, K.L. Wave structure of oblique detonation disturbed by an expansion wave from a bended tunnel. Appl. Therm. Eng. 2020, 180, 115856. [Google Scholar] [CrossRef]
- Choi, J.Y.; Shin, E.J.R.; Jeung, I.S. Unstable combustion induced by OSWs at the non-attaching condition of the oblique detonation wave. Proc. Combust. Inst. 2009, 32, 2387–2396. [Google Scholar] [CrossRef]
- Papalexandris, M.V. A numerical study of wedge-induced detonations. Combust. Flame 2000, 120, 526–538. [Google Scholar] [CrossRef]
- Walter, M.T.; da Silva, L.F.F. Numerical study of detonation stabilization by finite length wedges. AIAA J. 2006, 44, 353–361. [Google Scholar] [CrossRef]
- Fang, Y.S.; Hu, Z.M.; Teng, H.H. Numerical investigation of oblique detonations induced by a finite wedge in a stoichiometric hydrogen-air mixture. Fuel 2018, 234, 502–507. [Google Scholar] [CrossRef]
- Xiang, G.; Li, H.; Cao, R.; Chen, X. Study of the features of oblique detonation induced by a finite wedge in hydrogen-air mixtures with varying equivalence ratios. Fuel 2020, 264, 116854. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Gao, S.F.; Xiang, G.X. Study on initiation mode of oblique detonation induced by a finite wedge. Phys. Fluids 2021, 33, 016102. [Google Scholar] [CrossRef]
- Xiang, G.; Li, X.; Sun, X.; Chen, X. Investigations on oblique detonations induced by a finite wedge in high altitude. Aerosp. Sci. Technol. 2019, 95, 105451. [Google Scholar] [CrossRef]
- Liu, Y.; Han, X.; Yao, S.; Wang, J. A numerical investigation of the prompt oblique detonation wave sustained by a finite-length wedge. Shock Waves 2016, 26, 729–739. [Google Scholar] [CrossRef]
- Li, C.; Kailasanath, K.; Oran, E.S. Effects of boundary layers on oblique-detonation structures. In Proceedings of the 31st Aerospace Sciences Meeting, Reno, NV, USA, 11–14 January 1993; p. 450. [Google Scholar]
- Balakrishnan, G.; Williams, F.A. Turbulent combustion regimes for hypersonic propulsion employing hydrogen-air diffusion flames. J. Propuls. Power 1994, 10, 434–437. [Google Scholar] [CrossRef]
- Guo, H.; Jia, X.; Zhao, N.; Li, S.; Zheng, H.; Sun, C.; Chen, X. The formation and development of oblique detonation wave with different chemical reaction models. Aerosp. Sci. Technol. 2021, 117, 106964. [Google Scholar] [CrossRef]
- Kee, R.J.; Rupley, F.M.; Meeks, E.; Miller, J.A. Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics; UC-405, SAND96-8216; Sandia National Laboratories: Livermore, CA, USA, 1996. [Google Scholar]
- Fang, Y.; Hu, Z.; Teng, H.; Jiang, Z.; Ng, H.D. Numerical study of inflow equivalence ratio inhomogeneity on oblique detonation formation in hydrogen-air mixtures. Aerosp. Sci. Technol. 2017, 71, 256–263. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, J.; Zhu, D. Criticality for Oblique Detonation Waves Induced by a Finite Wedge in a Hydrogen–Air Mixture. Aerospace 2023, 10, 508. https://doi.org/10.3390/aerospace10060508
Qin J, Zhu D. Criticality for Oblique Detonation Waves Induced by a Finite Wedge in a Hydrogen–Air Mixture. Aerospace. 2023; 10(6):508. https://doi.org/10.3390/aerospace10060508
Chicago/Turabian StyleQin, Jianxiu, and Dehua Zhu. 2023. "Criticality for Oblique Detonation Waves Induced by a Finite Wedge in a Hydrogen–Air Mixture" Aerospace 10, no. 6: 508. https://doi.org/10.3390/aerospace10060508
APA StyleQin, J., & Zhu, D. (2023). Criticality for Oblique Detonation Waves Induced by a Finite Wedge in a Hydrogen–Air Mixture. Aerospace, 10(6), 508. https://doi.org/10.3390/aerospace10060508