Agglomerate Size Evolution in Solid Propellant Combustion under High Pressure
Abstract
:1. Introduction
2. Experimental and Numerical Methods
2.1. Experimental Method
2.2. Numerical Method
3. Results and Discussions
3.1. Agglomerate Size Distribution near the Burning Surface
3.2. Analytical Model for CCP Size Prediction
3.3. Experimental Verification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Ao, W.; Wen, Z.; Wang, Y.; Long, Y.X.; Liu, P.J.; He, G.Q.; Li, L.K.B. Modifying the ignition, combustion and agglomeration characteristics of composite propellants via Al-Mg alloy additives. Combust. Flame 2022, 238, 111926. [Google Scholar] [CrossRef]
- Liu, H.; Ao, W.; Hu, Q.W.; Liu, P.J.; Hu, S.Q.; Liu, L.L.; Wang, Y. Effect of RDX content on the agglomeration, combustion and condensed combustion products of an aluminized HTPB propellant. Acta Astronaut. 2020, 170, 198–205. [Google Scholar] [CrossRef]
- Liu, X.; Hu, S.; Liu, L.; Hu, Q.W.; Liu, P.J.; Hu, S.Q.; Liu, L.L.; Wang, Y. Effect of Al-Li alloy on the combustion performance of AP/RDX/Al/HTPB propellant. Aerospace 2022, 10, 222. [Google Scholar]
- Ao, W.; Wen, Z.; Liu, L.; Liu, P.J.; Gan, Y.H.; Wang, L.W.; Li, L.K.B. Controlling the combustion and agglomeration characteristics of a solid composite propellant via a DC electric field. Aerosp. Sci. Technol. 2022, 128, 107766. [Google Scholar] [CrossRef]
- Tian, H.; Meng, X.; Zhu, H.; Li, C.; He, L.; Cai, G. Dynamic Numerical simulation of hybrid rocket motor with HTPB-based fuel with 58% aluminum additives. Aerospace 2022, 9, 727. [Google Scholar] [CrossRef]
- Bhadran, A.; Manathara, J.; Ramakrishna, P.A. Thrust Control of Lab-Scale Hybrid Rocket Motor with Wax-Aluminum Fuel and Air as Oxidizer. Aerospace 2022, 9, 474. [Google Scholar] [CrossRef]
- Babuk, V.A.; Vasilyev, V.A.; Malakhov, M.S. Condensed combustion products at the burning surface of aluminized solid propellant. J. Propuls. Power 1999, 15, 783–793. [Google Scholar] [CrossRef]
- Chen, Q.; Liang, G. Numerical investigation on particle erosion characteristics of the elbow pipe in gas-steam ejection power system. Aerospace 2022, 9, 635. [Google Scholar] [CrossRef]
- Inamoto, T.; Fukuchi, A.B.; Miyazaki, S.; Matsuura, S.; Kawazu, H. Observation and evaluation of Al droplets from propellant. Trans. Space Technol. Jpn. 2009, 7, Pa_7–Pa_11. [Google Scholar] [CrossRef]
- Salita, M. Use of Water and Mercury Droplets to Simulate Al2O3 Collision-Coalescence in Rocket Motors. J. Propuls. Power 1991, 7, 505–512. [Google Scholar] [CrossRef]
- Willoughby, P.G.; Baker, K.L.; Hermsen, R.W. Photographic study of solid propellants burning in an acceleration environment. Symp. (Int.) Combust. 1971, 13, 1033–1045. [Google Scholar] [CrossRef]
- Beckstead, M.W. A model for solid propellant combustion. Symp. (Int.) Combust. 1981, 18, 175–185. [Google Scholar] [CrossRef]
- Cohen, N.S. A pocket model for aluminum agglomeration in composite propellants. AIAA J. 1983, 21, 720–725. [Google Scholar] [CrossRef]
- Grigorev, V.G.; Kutsenogii, K.P.; Zarko, V.E. Model of aluminum agglomeration during the combustion of a composite propellant. Combust. Explos. Shock Waves 1981, 17, 356–363. [Google Scholar] [CrossRef]
- Babuk, V.A.; Dolotkazin, I.N.; Sviridov, V.V. Simulation of agglomerate dispersion in combustion of aluminized solid propellants. Combust. Explos. Shock Waves 2003, 39, 195–203. [Google Scholar] [CrossRef]
- Gallier, S. A Stochastic Pocket Model for Aluminum Agglomeration in Solid Propellants. Propellants Explos. Pyrotech. 2009, 34, 97–105. [Google Scholar] [CrossRef]
- Jackson, T.L.; Najjar, F.; Buckmaster, J. New aluminum agglomeration models and their use in solid-propellant-rocket simulations. J. Propuls. Power 2005, 21, 925–936. [Google Scholar] [CrossRef]
- Gallier, S.; Yiao, M. Aluminum Agglomeration Model Calibration with Improved Experimental Data. J. Propuls. Power 2013, 29, 1252–1255. [Google Scholar] [CrossRef]
- Muravyev, N.; Frolov, Y.; Pivkina, A.; Monogarov, K.; Ordzhonikidze, O.; Bushmarinov, I.; Korlyukov, A. Influence of particle size and mixing technology on combustion of HMX/Al compositions. Propellants Explos. Pyrotech. 2009, 35, 226–232. [Google Scholar] [CrossRef]
- Glotov, O.G.; Yagodnikov, D.A.; Vorobev, V.S.; Zarko, V.E.; Simonenko, V.N. Ignition, combustion, and agglomeration of encapsulated aluminum particles in a composite solid propellant. II. Experimental studies of agglomeration. Combust. Explos. Shock Waves 2007, 43, 320–333. [Google Scholar] [CrossRef]
- Adel, W.M.; Liang, G. Service life prediction of AP/Al/HTPB solid rocket propellant with consideration of softening aging behavior. Chin. J. Aeronaut. 2019, 32, 151–158. [Google Scholar] [CrossRef]
- Yilmaz, N.; Donaldson, B.; Gill, W. Aluminum particle ignition studies with focus on effect of oxide barrier. Aerospace 2023, 10, 45. [Google Scholar] [CrossRef]
- Babuk, V.A.; Ivonenko, A.N.; Nnizyaev, A.A. Calculation of the characteristics of agglomerates during combustion of high-energy composite solid propellants. Combust. Explos. Shock. Waves 2015, 51, 549–559. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Géotechnique 1980, 30, 331–336. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, G.; Yuan, J.; Li, Z.; Liu, J. Numerical simulation of aluminum particle agglomeration near the burning surface of solid propellants. Fuel 2023, 342, 127767. [Google Scholar] [CrossRef]
- Jeenu, R.; Pinumalla, K.; Deepak, D. Size distribution of particles in combustion products of aluminized composite propellant. J. Propuls. Power 2012, 26, 715–723. [Google Scholar] [CrossRef]
- Babuk, V.A.; Vassiliev, V.A.; Sviridov, V.V. Propellant formulation factors and metal agglomeration in combustion of aluminized solid rocket propellant. Combust. Sci. Technol. 2001, 163, 261–289. [Google Scholar] [CrossRef]
- Liu, H.; Ao, W.; Liu, P.J.; Hu, S.Q.; Lv, X.; Gou, D.L.; Wang, H.Q. Experimental investigation on the condensed combustion products of aluminized GAP-based propellants. Aerosp. Sci. Technol. 2020, 97, 105595. [Google Scholar] [CrossRef]
- Melcher, J.C.; Krier, H.; Burton, R.L. Burning aluminum particles inside a laboratory-scale solid rocket motor. J. Propuls. Power 2002, 18, 631–640. [Google Scholar] [CrossRef]
- King, M.K. Aluminum combustion in a solid rocket motor environment. Proc. Combust. Inst. 2009, 32, 2107–2114. [Google Scholar] [CrossRef]
- Desjardin, P.E.; Felske, J.D.; Carrara, M.D. Mechanistic Model for Aluminum Particle Ignition and Combustion in Air. J. Propuls. Power 2005, 21, 478–485. [Google Scholar] [CrossRef]
Experiment No. | Chamber Pressure/MPa | Burning Rate/mm/s | Quench Distance/mm |
---|---|---|---|
1 | 6 | 4.5 | 2 |
2 | 8 | 4.8 | 2 |
3 | 10 | 5.1 | 2 |
4 | 6 | 4.5 | 40 |
5 | 8 | 4.8 | 40 |
6 | 10 | 5.1 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, S.; Liu, L.; Liu, H.; Jiang, Y.; Liu, P.; Pang, A.; Zhang, G.; Ao, W. Agglomerate Size Evolution in Solid Propellant Combustion under High Pressure. Aerospace 2023, 10, 515. https://doi.org/10.3390/aerospace10060515
Yue S, Liu L, Liu H, Jiang Y, Liu P, Pang A, Zhang G, Ao W. Agglomerate Size Evolution in Solid Propellant Combustion under High Pressure. Aerospace. 2023; 10(6):515. https://doi.org/10.3390/aerospace10060515
Chicago/Turabian StyleYue, Songchen, Lu Liu, Huan Liu, Yanfeng Jiang, Peijin Liu, Aimin Pang, Guangxue Zhang, and Wen Ao. 2023. "Agglomerate Size Evolution in Solid Propellant Combustion under High Pressure" Aerospace 10, no. 6: 515. https://doi.org/10.3390/aerospace10060515
APA StyleYue, S., Liu, L., Liu, H., Jiang, Y., Liu, P., Pang, A., Zhang, G., & Ao, W. (2023). Agglomerate Size Evolution in Solid Propellant Combustion under High Pressure. Aerospace, 10(6), 515. https://doi.org/10.3390/aerospace10060515