Numerical and Experimental Investigation on Nosebleed Air Jet Control for Hypersonic Vehicle
Abstract
:1. Introduction
2. Model and Methodology
2.1. Concept of Nosebleed Air Jet
2.2. Configuration of Computational Model
2.3. Computational Fluid Dynamics Method and Verification
3. Numerical Investigation of the Nosebleed Air Jet in a Blunt Cone Aircraft
3.1. Treatment of Numerical Accuracy
3.2. Influence on the Flow Field
3.3. Influence on the Aerodynamic Performance
4. Wind Tunnel Test Demonstration of the Nosebleed Air Jet
4.1. Experimental Model
4.2. Wind Tunnel and Measurement System
4.3. Test Results and Discussion
4.3.1. Flow Field Analysis
4.3.2. Aerodynamic Performance Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karagozian, A.R. Transverse jets and their control. Prog. Energy Combust. Sci. 2010, 36, 531–553. [Google Scholar] [CrossRef]
- Bertin, J.J.; Cummings, R.M. Fifty years of hypersonics: Where we’ve been, where we’re going. Prog. Aeronaut. Sci. 2003, 39, 511–536. [Google Scholar] [CrossRef] [Green Version]
- Viti, V.; Wallis, S.; Schetz, J.A.; Neel, R.; Bowersox, W.R.D. Jet interaction with a primary jet and an array of smaller jets. AIAA J. 2004, 42, 1358–1368. [Google Scholar] [CrossRef]
- Mahesh, K. The interaction of jets with crossflow. Annu. Rev. Fluid Mech. 2013, 45, 379–407. [Google Scholar] [CrossRef]
- DeSpirito, J. Turbulence model effects on cold-gas lateral jet interaction in a supersonic crossflow. J. Spacecr. Rockets 2015, 52, 836–853. [Google Scholar] [CrossRef]
- Huang, W. Transverse jet in supersonic crossflows. Aerosp. Sci. Technol. 2016, 50, 183–195. [Google Scholar] [CrossRef]
- Chai, X.C.; Iyer, P.S.; Mahesh, K. Numerical study of high speed jets in crossflow. J. Fluid Mech. 2015, 785, 152–188. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.A.; McCreton, S.F.; Awasthi, M.; Wills, A.O.; Moreau, D.J.; Doolan, C.J. The flow features of transverse jets in supersonic crossflow. Aerosp. Sci. Technol. 2021, 118, 107058. [Google Scholar] [CrossRef]
- Hassan, E.; Boles, J.; Aono, H.; Davis, D.; Shyy, W. Supersonic jet and crossflow interaction: Computational modeling. Prog. Aeronaut. Sci. 2013, 57, 1–24. [Google Scholar] [CrossRef]
- Altaharwah, Y.A.; Huang, R.F.; Hsu, C.M. Dispersion and upwind-side shear-layer characteristics of forward-inclined transverse jet in crossflow. Exp. Therm. Fluid Sci. 2020, 115, 110104. [Google Scholar] [CrossRef]
- Pudsey, A.S.; Wheatley, V.; Boyce, R.R. Behavior of multiple-jet interactions in a hypersonic boundary layer. J. Propul. Power 2015, 31, 144–155. [Google Scholar] [CrossRef]
- Getsinger, D.R.; Gevorkyan, L.; Smith, O.I.; Karagozian, A.R. Structural and stability characteristics of jet in crossflow. J. Fluid Mech. 2014, 760, 342–367. [Google Scholar] [CrossRef]
- Crafton, J.; Forlines, A.; Palluconi, S.; Hsu, K.Y.; Carter, C.; Gruber, M. Investigation of transverse jet injection in a supersonic crossflow using fast-responding pressure-sensitive paint. Exp. Fluids 2015, 56, 27. [Google Scholar] [CrossRef]
- Li, J.P.; Chen, S.S.; Cai, F.J.; Wang, S.; Yan, C. Bayesian uncertainty analysis of SA turbulence model for supersonic jet interaction simulations. Chin. J. Aeronaut. 2022, 34, 185–201. [Google Scholar] [CrossRef]
- Srivastava, B. Lateral jet control of a supersonic missile: Computational and experimental comparison. J. Spacecr. Rockets 1998, 35, 140–146. [Google Scholar] [CrossRef]
- Stahl, B.; Esch, H.; Guelhan, A. Experimental investigation of side jet interaction with a supersonic cross flow. Aerosp. Sci. Technol. 2008, 12, 269–275. [Google Scholar] [CrossRef]
- Pudsey, A.S.; Boyce, R.R.; Wheatley, V. Influence of common modeling choices for high-speed transverse jet-interaction simulations. J. Propul. Power 2013, 29, 1076–1086. [Google Scholar] [CrossRef]
- Kitson, R.C.; Cesnik, E.S. Fluid–structure–jet interaction effects on high-speed vehicle performance and stability. J. Spacecr. Rockets 2019, 56, 586–595. [Google Scholar] [CrossRef]
- Erdem, E.; Kontis, K. Experimental investigation of sonic transverse jets in Mach 5 crossflow. Aerosp. Sci. Technol. 2021, 110, 106419. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Liu, W.D.; Sun, M.B. Effect of microramp on transverse jet in supersonic crossflow. AIAA J. 2016, 54, 4041–4044. [Google Scholar] [CrossRef]
- Zhen, H.P.; Gao, Z.X.; Lee, C.H. Numerical investigation on jet interaction with a compression ramp. Chin. J. Aeronaut. 2013, 26, 898–908. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.B.; Liu, J.; Chen, Z.D.; Zhang, F. Numerical investigation of lateral jet with supersonic reacting flow. J. Spacecr. Rockets 2018, 55, 928–935. [Google Scholar] [CrossRef]
- Graham, M.J.; Weinacht, P.; Branders, J. Numerical investigation of supersonic jet interaction for finned bodies. J. Spacecr. Rockets 2002, 39, 376–383. [Google Scholar] [CrossRef] [Green Version]
- Brandeis, J.; Gill, J. Experimental investigation of side-jet steering for supersonic and hypersonic missiles. J. Spacecr. Rockets 1996, 33, 346–352. [Google Scholar] [CrossRef]
- Brandeis, J.; Gill, J. Experimental investigation of super- and hypersonic jet interaction on missile configurations. J. Spacecr. Rockets 1998, 35, 296–302. [Google Scholar] [CrossRef]
- Grandhi, R.K.; Roy, A. Performance of control jets on curved bodies in supersonic cross flows. J. Spacecr. Rockets 2019, 56, 1177–1188. [Google Scholar] [CrossRef]
- Grandhi, R.K.; Roy, A. Effectiveness of a reaction control system jet in a supersonic crossflow. J. Spacecr. Rockets 2017, 54, 883–891. [Google Scholar] [CrossRef]
- Kang, K.T.; Lee, S. Modeling and assessment of jet interaction database for continuous-type side jet. J. Spacecr. Rockets 2017, 54, 883–891. [Google Scholar] [CrossRef]
- Chai, D.; Fang, Y.W.; Peng, W.S.; Yang, P.F. Numerical investigation of lateral jet interaction effects on the hypersonic quasi-waverider vehicle. J. Aerosp. Eng. 2015, 229, 2671–2680. [Google Scholar] [CrossRef]
- Xue, F.; Ren, Y.P.; Li, Z.; Xu, C.; Wei, D.C.; Mao, X.L.; Jiang, Z.H. Aerodynamic characteristics of store during lateral jet assisted separation from cavity using free drop technique. Chin. J. Aeronaut. 2023, 36, 139–151. [Google Scholar] [CrossRef]
- Aswin, G.; Chakraborty, D. Numerical simulation of transverse side jet interaction with supersonic free stream. Aerosp. Sci. Technol. 2010, 14, 295–301. [Google Scholar] [CrossRef]
- De Vanna, F.; Bof, D.; Benini, E. Multi-objective RANS aerodynamic optimization of a hypersonic intake ramp at Mach 5. Energies 2022, 15, 2811. [Google Scholar] [CrossRef]
- Soltani, M.R.; Daliri, A.; Younsi, J.S. Effects of shock wave/boundary-layer interaction on performance and stability of a mixed-compression inlet. Sci. Iran. Trans. B. 2016, 23, 1811–1825. [Google Scholar] [CrossRef] [Green Version]
- De Vanna, F.; Picano, F.; Benini, E. Large-Eddy-Simulations of the unsteady behaviour of a Mach 5 hypersonic intake. In Proceedings of the AIAA Scitech 2021 Forum, Virtual, 11–15 & 19–21 January 2021; p. 0858. [Google Scholar] [CrossRef]
- Trapier, S.; Deck, S.; Duveau, P. Delayed detached-eddy simulation and analysis of supersonic inlet buzz. AIAA J. 2008, 46, 118–131. [Google Scholar] [CrossRef]
- Roache, P.J. Error bars for CFD. In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003; p. 408. [Google Scholar] [CrossRef]
- Tang, Z.G.; Xu, X.B.; Yang, Y.G.; Li, X.G.; Dai, J.W.; Lyu, Z.G.; He, W. Research progress on hypersonic wind tunnel aerodynamic testing techniques. Acta Aeronaut. Astronaut. Sin. 2015, 36, 86–97. (In Chinese) [Google Scholar]
Property | Value |
---|---|
Mach number | 5 |
Total pressure, MPa | 1.0 |
Total temperature, K | 360 |
Grid Case | No. of Cells (Million) | Distance between the Shock and the Surface at the Nozzle Position of x = 1D, mm | ||
---|---|---|---|---|
AOA = 6° | AOA = 0° | AOA = −6° | ||
Coarse | 1.65 | 32.6 | 29.1 | 24.5 |
Medium | 3.42 | 34.7 | 30.8 | 26.7 |
Fine | 5.36 | 35.2 | 31.4 | 27.3 |
Experimental value | – | 36.4 | 32.5 | 28.3 |
AOA | +6° | 0° | −2° | −4° | −6° | −8° | −10° |
---|---|---|---|---|---|---|---|
Without jet | 520.4 | 0.1 | −167.5 | −338.0 | −520.4 | −720.3 | −938.2 |
With jet | 517.1 | −1.2 | −168.2 | −338.0 | −519.3 | −717.7 | −937.6 |
Mach Number | Actual Flow Mach Number | Freestream Stagnation Pressure, MPa | Freestream Static Pressure, Pa | Freestream Stagnation Temperature, K | Freestream Static Temperature, K |
---|---|---|---|---|---|
5 | 4.95 | 1.0 | 2004 | 360 | 61 |
Component Cond. | Loads, N/(Nm) | Accuracy, % |
---|---|---|
Axial force X | 320 | 0.09 |
Normal force Y | 960 | 0.15 |
Side force Z | 320 | 0.25 |
Rolling moment MX | 6 | 0.32 |
Yawing moment MY | 12 | 0.30 |
Pitching moment MZ | 48 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Yang, J.; Duan, T.; Wang, J.; Li, X.; Zhang, K. Numerical and Experimental Investigation on Nosebleed Air Jet Control for Hypersonic Vehicle. Aerospace 2023, 10, 552. https://doi.org/10.3390/aerospace10060552
Zhang L, Yang J, Duan T, Wang J, Li X, Zhang K. Numerical and Experimental Investigation on Nosebleed Air Jet Control for Hypersonic Vehicle. Aerospace. 2023; 10(6):552. https://doi.org/10.3390/aerospace10060552
Chicago/Turabian StyleZhang, Lin, Junli Yang, Tiecheng Duan, Jie Wang, Xiuyi Li, and Kunyuan Zhang. 2023. "Numerical and Experimental Investigation on Nosebleed Air Jet Control for Hypersonic Vehicle" Aerospace 10, no. 6: 552. https://doi.org/10.3390/aerospace10060552
APA StyleZhang, L., Yang, J., Duan, T., Wang, J., Li, X., & Zhang, K. (2023). Numerical and Experimental Investigation on Nosebleed Air Jet Control for Hypersonic Vehicle. Aerospace, 10(6), 552. https://doi.org/10.3390/aerospace10060552