A Review of Flapping Mechanisms for Avian-Inspired Flapping-Wing Air Vehicles
Abstract
:1. Introduction
2. Avian Flight Characteristics
3. Flapping Mechanism
3.1. Classification of the Flapping Mechanism According to Wing Motions
3.1.1. One-Axis Flapping Mechanism
3.1.2. Multi-Axis Flapping Mechanism
3.2. Classification of the Flapping Mechanism According to Strategy for Aerodynamic Performance Improvement
3.2.1. Strategies for Increasing Thrust
3.2.2. Strategies for Increasing Lift/Drag Ratio
3.2.3. Strategies for Increasing Flight Efficiency
4. Research Topics for Advanced FWAV
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
FWAV | Flapping-Wing Air Vehicle, |
UAV | Unmanned Aerial Vehicle |
CFD | Computational Fluid Dynamics |
UVLM | Unsteady Vortex Lattice Method |
FSI | Fluid–Structure Interaction |
m | Mass |
g | Gravitational acceleration |
P | Required power |
P0 | Estimated power outputs |
References
- Shyy, W.; Aono, H.; Kang, C.-K.; Liu, H. An Introduction to Flapping Wing Aerodynamics; Cambridge University Press: London, UK, 2013; Volume 37. [Google Scholar]
- Dial, K.P.; Biewener, A.A.; Tobalske, B.W.; Warrick, D. Mechanical power output of bird flight. Nature 1997, 390, 67–70. [Google Scholar] [CrossRef]
- Lindhe Norberg, U.M. Structure, form, and function of flight in engineering and the living world. J. Morphol. 2002, 252, 52–81. [Google Scholar] [CrossRef] [PubMed]
- Han, J.-H.; Lee, J.-S.; Kim, D.-K. Bio-inspired flapping UAV design: A university perspective. In Proceedings of the 16th SPIE International Symposium Smart Structures + NDE, San Diego, CA, USA, 9–12 March 2009; pp. 466–477. [Google Scholar]
- Send, W.; Fischer, M.; Jebens, K.; Mugrauer, R.; Nagarathinam, A.; Scharstein, F. Artificial hinged-wing bird with active torsion and partially linear kinematics. In Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences, Brisbane, Australia, 23–28 September; 2012; pp. 1148–1157. [Google Scholar]
- Keennon, M.; Klingebiel, K.; Won, H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle. In Proceedings of the 50th AIAA Aerosp Sci Meet, Nashville, TN, USA, 9–12 January 2012; pp. 1–24. [Google Scholar]
- Shyy, W.; Kang, C.-k.; Chirarattananon, P.; Ravi, S.; Liu, H. Aerodynamics, sensing and control of insect-scale flapping-wing flight. Proc. R. Soc. A Math. Phys. Eng. Sci. 2016, 472, 20150712. [Google Scholar] [CrossRef] [Green Version]
- Chattaraj, N.; Ganguli, R. Mechatronic Approaches to Synthesize Biomimetic Flapping-Wing Mechanisms: A Review. Int. J. Aeronaut. Space Sci. 2022, 24, 105–120. [Google Scholar] [CrossRef]
- Chin, D.D.; Matloff, L.Y.; Stowers, A.K.; Tucci, E.R.; Lentink, D. Inspiration for wing design: How forelimb specialization enables active flight in modern vertebrates. J. R. Soc. Interface 2017, 14, 20170240. [Google Scholar] [CrossRef] [Green Version]
- Ward, T.A.; Rezadad, M.; Fearday, C.J.; Viyapuri, R. A review of biomimetic air vehicle research: 1984–2014. Int. J. Micro Air Veh. 2015, 7, 375–394. [Google Scholar] [CrossRef]
- Tobalske, B.; Dial, K. Flight kinematics of black-billed magpies and pigeons over a wide range of speeds. J. Exp. Biol. 1996, 199, 263–280. [Google Scholar] [CrossRef]
- Young, J.; Walker, S.M.; Bomphrey, R.J.; Taylor, G.K.; Thomas, A.L. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 2009, 325, 1549–1552. [Google Scholar] [CrossRef] [Green Version]
- Berge, J.C.V. A comparative study of the appendicular musculature of the order Ciconiiformes. Am. Midl. Nat. 1970, 84, 289–364. [Google Scholar] [CrossRef]
- Altshuler, D.L.; Bahlman, J.W.; Dakin, R.; Gaede, A.H.; Goller, B.; Lentink, D.; Segre, P.S.; Skandalis, D.A. The biophysics of bird flight: Functional relationships integrate aerodynamics, morphology, kinematics, muscles, and sensors. Can. J. Zool. 2015, 93, 961–975. [Google Scholar] [CrossRef] [Green Version]
- Vazquez, R. The automating skeletal and muscular mechanisms of the avian wing (Aves). Zoomorphology 1994, 114, 59–71. [Google Scholar] [CrossRef]
- Brown, R. The flight of birds. Biol. Rev. 1963, 38, 460–489. [Google Scholar] [CrossRef]
- Riskin, D.K.; Bergou, A.; Breuer, K.S.; Swartz, S.M. Upstroke wing flexion and the inertial cost of bat flight. Proc. R. Soc. B Biol. Sci. 2012, 279, 2945–2950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norberg, U.M. Vertebrate Flight: Mechanics, Physiology, Morphology, Ecology and Evolution; Springer: Göteborg, Sweden, 2012; Volume 27. [Google Scholar]
- Kang, C.-K.; Aono, H.; Cesnik, C.E.; Shyy, W. Effects of flexibility on the aerodynamic performance of flapping wings. J. Fluid Mech. 2011, 689, 32–74. [Google Scholar] [CrossRef] [Green Version]
- Addo-Akoto, R.; Han, J.-S.; Han, J.-H. Roles of wing flexibility and kinematics in flapping wing aerodynamics. J. Fluids Struct. 2021, 104, 103317. [Google Scholar] [CrossRef]
- Wu, P.; Ifju, P.; Stanford, B. Flapping wing structural deformation and thrust correlation study with flexible membrane wings. AIAA J. 2010, 48, 2111–2122. [Google Scholar] [CrossRef]
- Ponitz, B.; Schmitz, A.; Fischer, D.; Bleckmann, H.; Brücker, C. Diving-flight aerodynamics of a peregrine falcon (Falco peregrinus). PLoS ONE 2014, 9, e86506. [Google Scholar] [CrossRef] [Green Version]
- Lentink, D.; Müller, U.; Stamhuis, E.; De Kat, R.; Van Gestel, W.; Veldhuis, L.; Henningsson, P.; Hedenström, A.; Videler, J.J.; Van Leeuwen, J.L. How swifts control their glide performance with morphing wings. Nature 2007, 446, 1082–1085. [Google Scholar] [CrossRef]
- Stowers, A.K.; Lentink, D. Folding in and out: Passive morphing in flapping wings. Bioinspir. Biomim. 2015, 10, 025001. [Google Scholar] [CrossRef] [Green Version]
- Phan, H.V.; Park, H.C. Mechanisms of collision recovery in flying beetles and flapping-wing robots. Science 2020, 370, 1214–1219. [Google Scholar] [CrossRef]
- Hedenström, A.; Johansson, L.C.; Spedding, G.R. Bird or bat: Comparing airframe design and flight performance. Bioinspir. Biomim. 2009, 4, 015001. [Google Scholar] [CrossRef] [PubMed]
- Tobalske, B.W.; Hedrick, T.L.; Biewener, A.A. Wing kinematics of avian flight across speeds. J. Avian Biol. 2003, 34, 177–184. [Google Scholar] [CrossRef]
- Hieronymus, T.L. Flight feather attachment in rock pigeons (Columba livia): Covert feathers and smooth muscle coordinate a morphing wing. J. Anat. 2016, 229, 631–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, H.; Suzuki, H.; Kitamura, I.; Maeda, M.; Liu, H. Lift generation of hummingbird wing models with flexible loosened membranes. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 3777–3783. [Google Scholar]
- Tobalske, B.W.; Warrick, D.R.; Clark, C.J.; Powers, D.R.; Hedrick, T.L.; Hyder, G.A.; Biewener, A.A. Three-dimensional kinematics of hummingbird flight. J. Exp. Biol. 2007, 210, 2368–2382. [Google Scholar] [CrossRef] [Green Version]
- Pennycuick, C.J. A wind-tunnel study of gliding flight in the pigeon Columba livia. J. Exp. Biol. 1968, 49, 509–526. [Google Scholar] [CrossRef]
- Tobalske, B.W. Hovering and intermittent flight in birds. Bioinspir. Biomim. 2010, 5, 045004. [Google Scholar] [CrossRef] [Green Version]
- Tobalske, B.W.; Hearn, J.W.; Warrick, D.R. Aerodynamics of intermittent bounds in flying birds. Exp. Fluids 2009, 46, 963–973. [Google Scholar] [CrossRef]
- Von Busse, R.; Hedenström, A.; Winter, Y.; Johansson, L.C. Kinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae. Biol. Open 2012, 1, 1226–1238. [Google Scholar] [CrossRef] [Green Version]
- Hedenström, A.; Johansson, L.C. Bat flight: Aerodynamics, kinematics and flight morphology. J. Exp. Biol. 2015, 218, 653–663. [Google Scholar] [CrossRef] [Green Version]
- Pennycuick, C.J. Gliding flight of the dog-faced bat Rousettus aegyptiacus observed in a wind tunnel. J. Exp. Biol. 1971, 55, 833–845. [Google Scholar] [CrossRef]
- Pennycuick, C.J. Power requirements for horizontal flight in the pigeon Columba livia. J. Exp. Biol. 1968, 49, 527–555. [Google Scholar] [CrossRef]
- Madangopal, R.; Khan, Z.A.; Agrawal, S.K. Biologically inspired design of small flapping wing air vehicles using four-bar mechanisms and quasi-steady aerodynamics. J. Mech. Des. 2005, 127, 809–816. [Google Scholar] [CrossRef] [Green Version]
- Baek, S.S.; Ma, K.Y.; Fearing, R.S. Efficient resonant drive of flapping-wing robots. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 2854–2860. [Google Scholar]
- Mueller, D.; Bruck, H.; Gupta, S. Measurement of thrust and lift forces associated with drag of compliant flapping wing for micro air vehicles using a new test stand design. Exp. Mech. 2010, 50, 725–735. [Google Scholar] [CrossRef]
- Lee, J.-S.; Lee, D.-K.; Han, J.-H. Ornitopter attitude estimation: Ground test. In Proceedings of the 2010 World Automation Congress, Kobe, Japan, 19–23 September 2010; pp. 1–6. [Google Scholar]
- Nguyen, Q.-V.; Chan, W.L.; Debiasi, M. Design, fabrication, and performance test of a hovering-based flapping-wing micro air vehicle capable of sustained and controlled flight. In Proceedings of the IMAV 2014: International Micro Air Vehicle Conference and Competition 2014, Delft, The Netherlands, 12–15 August 2014; pp. 18–25. [Google Scholar]
- Mazaheri, K.; Ebrahimi, A.; Karimian, S. Performance analysis of a flapping-wing vehicle based on experimental aerodynamic data. J. Aerosp. Eng. 2012, 25, 45–50. [Google Scholar] [CrossRef]
- Yang, W.; Wang, L.; Song, B. Dove: A biomimetic flapping-wing micro air vehicle. Int. J. Micro Air Veh. 2018, 10, 70–84. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, X.; Zhang, G.; Yang, J. Design and analysis of single-degree-of-freedom flapping wing mechanism based on UG. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; p. 012060. [Google Scholar]
- Yang, L.-J.; Hsu, C.-K.; Han, H.-C.; Miao, J.-M. Light flapping micro aerial vehicle using electrical-discharge wire-cutting technique. J. Aircr. 2009, 46, 1866–1874. [Google Scholar] [CrossRef]
- Tsai, B.-J.; Fu, Y.-C. Design and aerodynamic analysis of a flapping-wing micro aerial vehicle. Aerosp. Sci. Technol. 2009, 13, 383–392. [Google Scholar] [CrossRef]
- Pan, E.; Chen, L.; Zhang, B.; Xu, W. A kind of large-sized flapping wing robotic bird: Design and experiments. In Proceedings of the Intelligent Robotics and Applications: 10th International Conference, ICIRA 2017, Wuhan, China, 16–18 August 2017; pp. 538–550. [Google Scholar]
- Zufferey, R.; Tormo-Barbero, J.; Guzmán, M.M.; Maldonado, F.J.; Sanchez-Laulhe, E.; Grau, P.; Pérez, M.; Acosta, J.Á.; Ollero, A. Design of the high-payload flapping wing robot e-flap. IEEE Robot. Autom. Lett. 2021, 6, 3097–3104. [Google Scholar] [CrossRef]
- Pan, E.; Xu, H.; Yuan, H.; Peng, J.; Xu, W. HIT-Hawk and HIT-Phoenix: Two kinds of flapping-wing flying robotic birds with wingspans beyond 2 meters. Biomim. Intell. Robot. 2021, 1, 100002. [Google Scholar] [CrossRef]
- Maglasang, J.; Goto, N.; Isogai, K. Development of bird-like micro aerial vehicle with flapping and feathering wing motions. Trans. Jpn. Soc. Aeronaut. Space Sci. 2008, 51, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Yu, J.; He, G.; Cai, Y. Study on transmission mechanism and flexible flapping wings of an underactuated flapping wing robot. J. Intell. Robot. Syst. 2022, 104, 19. [Google Scholar] [CrossRef]
- Yusoff, H.; Abdullah, M.; Mujeebu, M.A.; Ahmad, K. Development of flexible wings and flapping mechanism with integrated electronic control system, for micro air vehicle research. Exp. Tech. 2013, 37, 25–37. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Phan, H.V.; Au, T.K.L.; Park, H.C. Experimental study on thrust and power of flapping-wing system based on rack-pinion mechanism. Bioinspir. Biomim. 2016, 11, 046001. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Li, D.; Jiaqi, J.; Jinwu, X.; Wei, X. Design and experimental study of a new flapping wing rotor micro aerial vehicle. In Proceedings of the 2017 IEEE International Conference on Unmanned Systems, Miami, FL, USA, 27–29 October 2017; pp. 29–33. [Google Scholar]
- Hines, L.; Campolo, D.; Sitti, M. Liftoff of a motor-driven, flapping-wing microaerial vehicle capable of resonance. IEEE Trans. Robot. 2013, 30, 220–232. [Google Scholar] [CrossRef]
- Khan, Z.A.; Agrawal, S.K. Design and optimization of a biologically inspired flapping mechanism for flapping wing micro air vehicles. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 373–378. [Google Scholar]
- Hoff, J.; Ramezani, A.; Chung, S.-J.; Hutchinson, S. Optimizing the structure and movement of a robotic bat with biological kinematic synergies. Int. J. Robot. Res. 2018, 37, 1233–1252. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Song, B.; Wang, Z.; Xue, D.; Liu, K. A Novel Actuation Strategy for an Agile Bioinspired FWAV Performing a Morphing-Coupled Wingbeat Pattern. IEEE Trans. Robot. 2022, 39, 452–469. [Google Scholar] [CrossRef]
- Furst, S.J.; Bunget, G.; Seelecke, S. Design and fabrication of a bat-inspired flapping-flight platform using shape memory alloy muscles and joints. Smart Mater. Struct. 2012, 22, 014011. [Google Scholar] [CrossRef]
- Żbikowski, R.; Galin’ski, C.; Pedersen, C.B. Four-bar linkage mechanism for insectlike flapping wings in hover: Concept and an outline of its realization. J. Mech. Des. 2005, 127, 817–824. [Google Scholar] [CrossRef]
- Hu, Y.; Ru, W.; Liu, Q.; Wang, Z. Design and Aerodynamic Analysis of Dragonfly-like Flapping Wing Micro Air Vehicle. J. Bionic Eng. 2022, 19, 343–354. [Google Scholar] [CrossRef]
- Ji, B.; Zhu, Q.; Guo, S.; Yang, F.; Li, Y.; Zhu, Z.; Chen, S.; Song, R.; Li, Y. Design and experiment of a bionic flapping wing mechanism with flapping–twist–swing motion based on a single rotation. AIP Adv. 2020, 10, 065018. [Google Scholar] [CrossRef]
- Galiński, C.; Żbikowski, R. Insect-like flapping wing mechanism based on a double spherical Scotch yoke. J. R. Soc. Interface 2005, 2, 223–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.; Hu, Y.; Li, Q.; Ma, L.; Wang, Y.; Zhou, X.; Liu, Q. Design and analysis of an innovative flapping wing micro aerial vehicle with a figure eight wingtip trajectory. Mech. Sci. 2021, 12, 603–613. [Google Scholar] [CrossRef]
- Kim, D.-K.; Kim, H.-I.; Han, J.-H.; Kwon, K.-J. Experimental investigation on the aerodynamic characteristics of a bio-mimetic flapping wing with macro-fiber composites. J. Intell. Mater. Syst. Struct. 2008, 19, 423–431. [Google Scholar] [CrossRef]
- Wissa, A.; Tummala, Y.; Hubbard, J., Jr.; Frecker, M. Passively morphing ornithopter wings constructed using a novel compliant spine: Design and testing. Smart Mater. Struct. 2012, 21, 094028. [Google Scholar] [CrossRef]
- Hoff, J.; Jeon, N.; Li, P.; Kim, J. Bat Bot 2.0: Bio-inspired anisotropic skin, passive wrist joints, and redesigned flapping mechanism. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 8424–8430. [Google Scholar]
- Jitsukawa, T.; Adachi, H.; Abe, T.; Yamakawa, H.; Umezu, S. Bio-inspired wing-folding mechanism of micro air vehicle (MAV). Artif. Life Robot. 2017, 22, 203–208. [Google Scholar] [CrossRef]
- Kumar, D.; Goyal, T.; Kamle, S.; Mohite, P.; Lau, E. Realisation and testing of novel fully articulated bird-inspired flapping wings for efficient and agile UAVs. Aeronaut. J. 2021, 125, 2114–2148. [Google Scholar] [CrossRef]
- Ruiz, C.; Acosta, J.Á.; Ollero, A. Optimal Elastic Wing for Flapping-Wing Robots Through Passive Morphing. IEEE Robot. Autom. Lett. 2022, 8, 608–615. [Google Scholar] [CrossRef]
- Colorado, J.; Barrientos, A.; Rossi, C.; Breuer, K.S. Biomechanics of smart wings in a bat robot: Morphing wings using SMA actuators. Bioinspir. Biomim. 2012, 7, 036006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, N.; Zhou, X.; He, G.; Yu, J. Design and analysis of a bat-like active morphing wing mechanism. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, NC, USA, 5 December 2016; p. V05AT07A054. [Google Scholar]
- Savastano, E.; Perez-Sanchez, V.; Arrue, B.; Ollero, A. High-Performance Morphing Wing for Large-Scale Bio-Inspired Unmanned Aerial Vehicles. IEEE Robot. Autom. Lett. 2022, 7, 8076–8083. [Google Scholar] [CrossRef]
- Folkertsma, G.A.; Straatman, W.; Nijenhuis, N.; Venner, C.H.; Stramigioli, S. Robird: A robotic bird of prey. IEEE Robot. Autom. Mag. 2017, 24, 22–29. [Google Scholar] [CrossRef]
- Chellapurath, M.; Noble, S.; Sreejalekshmi, K. Design and kinematic analysis of flapping wing mechanism for common swift inspired micro aerial vehicle. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2021, 235, 4026–4036. [Google Scholar] [CrossRef]
- Xu, K.; Liu, H. Design of a Compliant Flapping-Wing Mechanism with Flapping–Twist–Swing Motion. IEEE/ASME Trans. Mechatron. 2022, 27, 5197–5207. [Google Scholar] [CrossRef]
- Jiang, H.; Zhou, C.; Xie, P. Design and kinematic analysis of seagull inspired flapping wing robot. In Proceedings of the 2016 IEEE International Conference on Information and Automation (ICIA), Ningbo, China, 1–3 August 2016; pp. 1382–1386. [Google Scholar]
- Kim, S.; Kim, M.; Kim, S.; Suk, J. Design, fabrication, and flight test of articulated ornithopter. In Proceedings of the 10th International Micro Air Vehicles Conference, Melbourne, Australia, 17–23 November 2018; pp. 1–6. [Google Scholar]
- Chand, A.N.; Kawanishi, M.; Narikiyo, T. Design Analysis Modelling and Experimental Validation of a Bird-like Flapping-Wing Flying Robot. In Proceedings of the IMAV 2014 International Micro Air Vehicle Conference and Competition, Delft, The Netherlands, 12–15 August 2014; pp. 12–15. [Google Scholar]
- Stopforth, R.; Bright, G. MechaBird: A biological inspired mechatronics bird for the evaluation of flight characteristics. In Proceedings of the 2015 IEEE International Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden, 24–28 August 2015; pp. 335–341. [Google Scholar]
- Festo. BionicFlyingFox. Available online: https://www.festo.com/us/en/e/about-festo/research-and-development/bionic-learning-network/highlights-from-2015-to-2017/bionicflyingfox-id_32755/ (accessed on 1 April 2023).
- Bie, D.; Li, D.; Xiang, J.; Li, H.; Kan, Z.; Sun, Y. Design, aerodynamic analysis and test flight of a bat-inspired tailless flapping wing unmanned aerial vehicle. Aerosp. Sci. Technol. 2021, 112, 106557. [Google Scholar] [CrossRef]
- Li, Y.; Yang, W.; Chen, A.; Zhang, R. Mechanism Design and Aerodynamic Research of Retractable Folding Flapping Wing. In Proceedings of the 32th Congress of the International Council of the Aeronautical Sciences, Shanghai, China, 6–10 September 2021. [Google Scholar]
- Wang, C.; Zhou, C.; Zhang, X.; Liu, C. An optimization on single-crank-double-rocker flapping wing mechanism. In Proceedings of the 2010 Fourth International Conference on Genetic and Evolutionary Computing, Shenzhen, China, 13–15 December 2010; pp. 337–340. [Google Scholar]
- Dewangan, B.; Pradhan, D.; Roy, H. Bioinspired flapping wing UAV and its kinematic analysis—A novel approach. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2022, 236, 570–587. [Google Scholar] [CrossRef]
- Xue, D.; Song, B. Tuning the Deformation of Flapping Wing to Improve the Flight Efficiency of Dove FWMAV. J. Aerosp. Eng. 2021, 34, 04021069. [Google Scholar] [CrossRef]
- Ryu, S.W.; Lee, J.G.; Kim, H.J. Design, fabrication, and analysis of flapping and folding wing mechanism for a robotic bird. J. Bionic Eng. 2020, 17, 229–240. [Google Scholar] [CrossRef]
- Ackerman, E. Festo’s New Bio-Inspired Robots Include a Feathery Bionic Bird. Available online: https://spectrum.ieee.org/festo-bioinspired-robots-bionicswift (accessed on 1 April 2023).
- Straatman, W. Developing an Autopilot for the Peregrine Falcon Robird. Master’s Thesis, University of Twent, Enschede, The Netherlands, 2014. [Google Scholar]
- Zhang, H.; Liu, Z. Design and Research on Flapping Mechanism of Biomimetic Albatross. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2022; p. 012006. [Google Scholar]
- Karásek, M.; Muijres, F.T.; De Wagter, C.; Remes, B.D.; De Croon, G.C. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science 2018, 361, 1089–1094. [Google Scholar] [CrossRef] [Green Version]
- Phan, H.V.; Aurecianus, S.; Kang, T.; Park, H.C. KUBeetle-S: An insect-like, tailless, hover-capable robot that can fly with a low-torque control mechanism. Int. J. Micro Air Veh. 2019, 11, 1756829319861371. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Song, B.; Xue, D. Design and Verification of Large-Scaled Flapping Wings for High Altitude Environment. Appl. Sci. 2022, 12, 5140. [Google Scholar] [CrossRef]
- Yousaf, R.; Shahzad, A.; Qadri, M.M.; Javed, A. Recent advancements in flapping mechanism and wing design of micro aerial vehicles. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2021, 235, 4425–4446. [Google Scholar] [CrossRef]
- Gomez-Tamm, A.E.; Perez-Sanchez, V.; Arrue, B.C.; Ollero, A. SMA actuated low-weight bio-inspired claws for grasping and perching using flapping wing aerial systems. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 8807–8814. [Google Scholar]
- Carollo, G.; Ingrassia, T.; Pantano, A. Design of a low cost 3D printable single-component compliant mechanism for FWMAV’s wing actuation. In Proceedings of the Design Tools and Methods in Industrial Engineering II: Proceedings of the Second International Conference on Design Tools and Methods in Industrial Engineering, ADM 2021, Rome, Italy, 9–10 September 2021; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 39–49. [Google Scholar]
- Bhattacharjee, D.; Paranjape, A.A.; Pant, R.S. Optimization of the spanwise twist of a flapping wing for bird-sized aircraft using a quasi-steady aerodynamic model. Int. J. Aeronaut. Space Sci. 2019, 20, 571–583. [Google Scholar] [CrossRef]
- Kumaresan, A.; Subramanian, L.G. Optimal flapping wing shape and kinematics are different for different flight velocities: An analysis on local relative wind. Eng. Res. Express 2021, 3, 015023. [Google Scholar] [CrossRef]
- Kalpathy Venkiteswaran, V.; Su, H. Optimization of mechanism design of flapping wing MAV. In Proceedings of the 55th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference, National Harbor, MD, USA, 13–17 January 2014; pp. 13–17. [Google Scholar]
- Van Truong, T.; Kureemun, U.; Tan, V.B.C.; Lee, H.P. Study on the structural optimization of a flapping wing micro air vehicle. Struct. Multidiscip. Optim. 2018, 57, 653–664. [Google Scholar] [CrossRef]
- Stanford, B.; Beran, P. Conceptual design of compliant mechanisms for flapping wings with topology optimization. AIAA J. 2011, 49, 855–867. [Google Scholar] [CrossRef]
Type | Mechanism | Refs. |
---|---|---|
Rigid mechanism | Four-bar planar linkage mechanism double-crank double-rocker | [41,42,43] |
Four-bar planar linkage mechanism single-crank double-rocker | [44,45,46,47] | |
Four-bar spatial linkage mechanism | [48,49,50,51,52] | |
Slide-crank mechanism | [53,54] | |
Scotch-yoke mechanism | [55] | |
Compliant mechanism | Flexible joint | [38,39,56,57] |
Flexible frame | [40] |
Motion | Type | Mechanism | Refs. |
---|---|---|---|
Wing folding | Passive * | Rigid mechanism | [24,58,68,69] |
Compliant mechanism | [71] | ||
Active ** | Rigid mechanism | [59,84] | |
Compliant mechanism | [60,72,73,74] | ||
Twisting | Passive | Rigid mechanism | [61,62,63,64,65,75,76] |
Compliant mechanism | [57,77] | ||
Active | Rigid mechanism | [5,70,78] | |
Compliant mechanism | [66] | ||
Wrist flexing | Passive | Rigid mechanism | [5,78,79,80,81,82,83] |
Compliant mechanism | [67,68] | ||
Active | Rigid mechanism | [70] | |
Compliant mechanism | - |
Objective | Span [mm] | Weight [g] | Wing Motion | Contribution | Validation | Ref. |
---|---|---|---|---|---|---|
Thrust | 640 | - | Flapping | Thrust was increased by adjusting the natural frequency of the wing. | Inertial force measurement test | [87] |
Thrust | 290 | 24.8 | Flapping and twisting | Thrust was increased compared to the mechanism that cannot generate twisting. | Wind tunnel test | [65] |
Thrust | 940 | 1500 | Flapping, wing folding, and feathered wing | Thrust was increased due to the wing shape changing by the feathers. | Inertial force measurement test | [69] |
Lift/Drag Ratio | 530 | 79 | Flapping and wing folding | Drag was reduced due to wing folding. | Wind tunnel test | [72] |
Lift/Drag Ratio | 400 | - | Flapping and wrist flexing | Lift was increased compared to the mechanism that cannot bend. | Inertial force measurement test | [88] |
Lift/Drag Ratio | 1600 | 1100 | Flapping | Lift was increased by increasing the stiffness of the inner wing. | CFD analysis, wind tunnel test and outdoor flight test | [94] |
Lift/Drag Ratio | 1500 | 650 | Flapping and wing folding | Lift was increased by searching the parameters of the compliant mechanism with aerodynamic analysis. | Indoor flight test | [71] |
Lift/Drag Ratio & Flight efficiency | - | - | Flapping and wrist flexing | More lift was generated compared to the case without the complaint spine (45% energy consumption reduction; 16% lift increase). | Inertial force measurement test | [67] |
Flight efficiency | 2000 | 650 | Flapping and wing folding | By using foldable and flexible wing, it can be driven at a lower flapping frequency and energy consumption can be reduced. | UVLM analysis, indoor and outdoor flight test | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.-H.; Han, Y.-J.; Yang, H.-H.; Lee, S.-G.; Lee, E.-H. A Review of Flapping Mechanisms for Avian-Inspired Flapping-Wing Air Vehicles. Aerospace 2023, 10, 554. https://doi.org/10.3390/aerospace10060554
Han J-H, Han Y-J, Yang H-H, Lee S-G, Lee E-H. A Review of Flapping Mechanisms for Avian-Inspired Flapping-Wing Air Vehicles. Aerospace. 2023; 10(6):554. https://doi.org/10.3390/aerospace10060554
Chicago/Turabian StyleHan, Jae-Hung, Yu-Jeong Han, Hyeon-Ho Yang, Sang-Gil Lee, and Eun-Hyuck Lee. 2023. "A Review of Flapping Mechanisms for Avian-Inspired Flapping-Wing Air Vehicles" Aerospace 10, no. 6: 554. https://doi.org/10.3390/aerospace10060554
APA StyleHan, J. -H., Han, Y. -J., Yang, H. -H., Lee, S. -G., & Lee, E. -H. (2023). A Review of Flapping Mechanisms for Avian-Inspired Flapping-Wing Air Vehicles. Aerospace, 10(6), 554. https://doi.org/10.3390/aerospace10060554