Active Flow Control for Passage Vortex Reduction in a Linear Turbine Cascade with Various Tip Clearance Sizes Using a Dielectric Barrier Discharge Plasma Actuator
Abstract
:1. Introduction
2. Experimental Equipment and Method
2.1. LTC Wind Tunnel
2.2. PIV Measurements and Data Analysis
2.3. PA
3. Experimental Results and Discussion
3.1. Secondary Flow without Tip Clearance
3.2. Effects of Tip Clearance Size under the Condition of No Control
3.3. Effect of the Input Voltage on Active Flow Control of the PV by a Plasma Actuator
3.3.1. Tip Clearance of 1.6 mm (PV: Large, TLV: Small)
3.3.2. Tip Clearance of 3.0 mm (PV: Small, TLV: Large)
4. Concluding Remarks
- Only a PV exists in the absence of tip clearance. As the input voltage increases, the PV gradually decreases.
- In the absence of PA control, the blade TLV increases as the tip clearance increases. As the TLV increases, the PV decreases.
- At a tip clearance of 1.6 mm, a large PV and a small TLV occur. As the input voltage increases, the maximum flow velocity of the secondary flow due to the PV decreases. The area of the high turbulence intensity caused by the TLV increased, and the maximum turbulence intensity remained almost unchanged. At the maximum input voltage of 15 kVp-p, the maximum velocity of the PV decreases by 72%. As the input voltage increases, the PV decreases; conversely, the TLV increases. At 15 kVp-p, the maximum vorticity due to the PV and TLV decreases by 62% and 26%, respectively.
- At a tip clearance of 3.0 mm, a small PV and a large TLV occur. As the input voltage increases, the maximum flow velocity of the secondary flow due to the TLV increases. Owing to the PV and TLV, the regions with high turbulence intensity spread throughout the passage. At a maximum input voltage of 15 kVp-p, the maximum velocity of the TLV increases by 62%. At an input voltage of 11 kVp-p, the maximum vorticity due to the PV and TLV decrease by 43% and 19%, respectively.
- Changes in the center positions of the PV and TLV are clarified for each tip clearance owing to changes in the input voltage of the PA. When the input voltage is increased, the PV and TLV center positions move toward the PS of the tip of the adjacent blade and the middle of the flow passage, respectively. Under the condition of large tip clearance, the amount of movement in the center position of the PV and TLV increases.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Latin symbols | |
C | Chord length (mm) |
Cax | Axial chord length (mm) |
H | Blade height (mm) |
N | Number of blades |
S | Blade pitch (mm) |
Tu | Turbulence intensity (%) |
U | Velocity (m/s) |
UFS,out | Freestream velocity at the blade outlet (m/s) |
VAC | Peak-to-peak input voltage (kV) |
X | Horizontal direction (mm) |
Y | Spanwise (vertical) direction (mm) |
Greek symbols | |
α1 | Inlet flow angle (°) |
α2 | Exit flow angle (°) |
Ω | Vorticity (1/s) |
ξ | Stagger angle (°) |
τ | Tip clearance (mm) |
Abbreviations | |
DBD | Dielectric Barrier Discharge |
FS | Freestream |
PA | Plasma Actuator |
PIV | Particle Image Velocimetry |
PS | Pressure Surface |
PV | Passage Vortex |
SS | Suction Surface |
TE | Trailing Edge |
TLF | Tip Leakage Flow |
TLV | Tip Leakage Vortex |
WVIPV | Wall Vortex Induced by Passage Vortex |
Appendix A
Pressure Surface Side | Suction Surface Side | |||
---|---|---|---|---|
No. | XPS (mm) | YPS (mm) | XSS (mm) | YSS (mm) |
1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2 | 0.4423 | 0.1716 | −0.2668 | −0.3936 |
3 | 0.8643 | 0.1586 | −0.3378 | −0.8185 |
4 | 1.3546 | 0.0425 | −0.3016 | −1.3439 |
5 | 1.9132 | −0.1619 | −0.1580 | −1.9662 |
6 | 2.5364 | −0.4395 | 0.0963 | −2.6771 |
7 | 3.2192 | −0.7728 | 0.4666 | −3.4644 |
8 | 3.9554 | −1.1425 | 0.9591 | −4.3130 |
9 | 4.7372 | −1.5280 | 1.5815 | −5.2050 |
10 | 5.5554 | −1.9078 | 2.3431 | −6.1186 |
11 | 6.4448 | −2.2785 | 3.3067 | −7.0759 |
12 | 7.7159 | −2.7072 | 4.9615 | −8.3417 |
13 | 8.8513 | −2.9684 | 6.7522 | −9.3026 |
14 | 9.8871 | −3.0937 | 8.6428 | −9.9493 |
15 | 10.8682 | −3.1083 | 10.5882 | −10.2787 |
16 | 11.8420 | −3.0233 | 12.5412 | −10.3015 |
17 | 12.8480 | −2.8355 | 14.4623 | −10.0425 |
18 | 13.9117 | −2.5334 | 16.3257 | −9.5341 |
19 | 15.0445 | −2.1045 | 18.1202 | −8.8099 |
20 | 16.2472 | −1.5394 | 19.8450 | −7.8995 |
21 | 17.5146 | −0.8345 | 21.5053 | −6.8269 |
22 | 18.8389 | 0.0095 | 23.1088 | −5.6111 |
23 | 20.2120 | 0.9885 | 24.6634 | −4.2671 |
24 | 21.6266 | 2.0957 | 26.1768 | −2.8074 |
25 | 23.0762 | 3.3231 | 27.6554 | −1.2425 |
26 | 24.5552 | 4.6618 | 29.1045 | 0.4183 |
27 | 26.0593 | 6.1025 | 30.5287 | 2.1665 |
28 | 27.5847 | 7.6360 | 31.9315 | 3.9940 |
29 | 29.1285 | 9.2531 | 33.3160 | 5.8934 |
30 | 30.6884 | 10.9446 | 34.6847 | 7.8573 |
31 | 32.2621 | 12.7018 | 36.0394 | 9.8787 |
32 | 33.8483 | 14.5159 | 37.3817 | 11.9509 |
33 | 35.4456 | 16.3789 | 38.7130 | 14.0675 |
34 | 37.0529 | 18.2827 | 40.0344 | 16.2223 |
35 | 38.6694 | 20.2199 | 41.3465 | 18.4095 |
36 | 40.2944 | 22.1830 | 42.6502 | 20.6237 |
37 | 41.9276 | 24.1653 | 43.9458 | 22.8597 |
38 | 43.5684 | 26.1604 | 45.2337 | 25.1129 |
39 | 45.2168 | 28.1625 | 46.5143 | 27.3792 |
40 | 46.8726 | 30.1662 | 47.7875 | 29.6549 |
41 | 48.5360 | 32.1671 | 49.0534 | 31.9376 |
42 | 48.6796 | 32.3109 | 49.0854 | 32.0333 |
43 | 48.7752 | 32.3429 | 49.0806 | 32.1341 |
44 | 48.8760 | 32.3383 | 49.0397 | 32.2263 |
45 | 48.9683 | 32.2976 | 48.9683 | 32.2976 |
References
- Denton, J.D. The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines. ASME J. Turbomach. 1993, 115, 621–656. [Google Scholar] [CrossRef]
- Turner, J.R. An Investigation of the End-Wall Boundary Layer of a Turbine-Nozzle Cascade. Trans. ASME 1957, 79, 1801–1805. [Google Scholar] [CrossRef]
- Dunham, J. A Review of Cascade Data on Secondary Losses in Turbines. J. Mech. Eng. Sci. 1970, 12, 48–59. [Google Scholar] [CrossRef]
- Langston, L.S. Crossflows in a Turbine Cascade Passage. J. Eng. Power 1980, 102, 866–874. [Google Scholar] [CrossRef]
- Sieverding, C.H. Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages. ASME J. Eng. Gas Turbines Power 1985, 107, 248–257. [Google Scholar] [CrossRef]
- Hodson, H.P.; Dominy, R.G. Three-Dimensional Flow in a Low-Pressure Turbine Cascade at Its Design Condition. ASME J. Turbomach. 1987, 109, 177–185. [Google Scholar] [CrossRef]
- Hodson, H.P.; Dominy, R.G. The Off-Design Performance of a Low-Pressure Turbine Cascade. ASME J. Turbomach. 1987, 109, 201–209. [Google Scholar] [CrossRef]
- Sharma, O.P.; Butler, T.L. Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades. ASME J. Turbomach. 1987, 109, 229–236. [Google Scholar] [CrossRef]
- Wang, H.P.; Olson, S.J.; Goldstein, R.J.; Eckert, E.R.G. Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades. ASME J. Turbomach. 1997, 119, 1–8. [Google Scholar] [CrossRef]
- Papa, M.; Goldstein, R.; Gori, F. Numerical heat transfer predictions and mass/heat transfer measurements in a linear turbine cascade. Appl. Therm. Eng. 2007, 27, 771–778. [Google Scholar] [CrossRef]
- Cui, J.; Rao, V.N.; Tucker, P. Numerical investigation of secondary flows in a high-lift low pressure turbine. Int. J. Heat Fluid Flow 2017, 63, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Kanani, Y.; Acharya, S.; Ames, F. Numerical Predictions of Turbine Cascade Secondary Flows and Heat Transfer With Inflow Turbulence. ASME J. Turbomach. 2021, 143, 121008. [Google Scholar] [CrossRef]
- Sun, S.; Kang, J.; Lei, Z.; Huang, Z.; Si, H.; Wan, X. Analysis of the Effect of the Leading-Edge Vortex Structure on Unsteady Secondary Flow at the Endwall of a High-Lift Low-Pressure Turbine. Aerospace 2023, 10, 237. [Google Scholar] [CrossRef]
- Robison, Z.; Gross, A. Comparative numerical investigation of wake effect on low-pressure turbine endwall flow. Aerosp. Sci. Technol. 2022, 131, 107970. [Google Scholar] [CrossRef]
- Ligrani, P.; Potts, G.; Fatemi, A. Endwall aerodynamic losses from turbine components within gas turbine engines. Propuls. Power Res. 2017, 6, 1–14. [Google Scholar] [CrossRef]
- Ananthakrishnan, K.; Govardhan, M. Influence of fillet shapes on secondary flow field in a transonic axial flow turbine stage. Aerosp. Sci. Technol. 2018, 82–83, 425–437. [Google Scholar] [CrossRef]
- Turgut, Ö.H.; Camci, C. A simultaneous use of a leading-edge fillet and a non-axisymmetrically contoured endwall in a turbine stage. Aerosp. Sci. Technol. 2021, 118, 106985. [Google Scholar] [CrossRef]
- Schmid, J.; Schulz, A.; Bauer, H.-J. Influence of a Non-Axisymmetric Endwall on the Flow Field in a Turbine Passage: High-Resolution LDV. In Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway, 11–15 June 2018. Paper No. GT2018-75061. [Google Scholar] [CrossRef]
- Hu, C.; Liu, H.; Geng, K.; Rong, R. Numerical investigation and loss estimation of high-pressure turbine cascade flow with contoured endwall and incoming wakes. Aerosp. Sci. Technol. 2020, 107, 106335. [Google Scholar] [CrossRef]
- Su, X.; Bian, X.; Li, H.; Yuan, X. Unsteady flows of a highly loaded turbine blade with flat endwall and contoured endwall. Aerosp. Sci. Technol. 2021, 118, 106989. [Google Scholar] [CrossRef]
- Sangston, K.; Little, J.; Lyall, M.E.; Sondergaard, R. End Wall Loss Reduction of High Lift Low Pressure Turbine Airfoils Using Profile Contouring—Part II: Validation. ASME J. Turbomach. 2014, 136, 081006. [Google Scholar] [CrossRef]
- Chung, J.T.; Simon, T.W.; Buddhavarapu, J. Three-Dimensional Flow Near the Blade/Endwall Junction of a Gas Turbine: Application of a Boundary Layer Fence. In Proceedings of the ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition, Orlando, FL, USA, 3–6 June 1991. Paper No. 91-GT-045. [Google Scholar] [CrossRef] [Green Version]
- Shyam, V.; Ameri, A.; Poinsatte, P.; Thurman, D.; Wroblewski, A.; Snyder, C. Application of Pinniped Vibrissae to Aeropropulsion. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, QC, Canada, 15–19 June 2015. Paper No. GT2015-43055. [Google Scholar] [CrossRef] [Green Version]
- Benton, S.I.; Bons, J.P.; Sondergaard, R. Secondary Flow Loss Reduction Through Blowing for a High-Lift Front-Loaded Low Pressure Turbine Cascade. ASME J. Turbomach. 2012, 135, 021020. [Google Scholar] [CrossRef]
- Benton, S.I.; Bernardini, C.; Bons, J.P.; Sondergaard, R. Parametric Optimization of Unsteady End Wall Blowing on a Highly Loaded Low-Pressure Turbine. ASME J. Turbomach. 2014, 136, 071013. [Google Scholar] [CrossRef]
- Bloxham, M.J.; Bons, J.P. A Global Approach to Turbomachinery Flow Control: Passage Vortex Control. ASME J. Turbomach. 2014, 136, 041003. [Google Scholar] [CrossRef]
- Matsunuma, T. Effects of the Installation Location of a Dielectric Barrier Discharge Plasma Actuator on the Active Passage Vortex Control of a Turbine Cascade at Low Reynolds Numbers. Actuators 2022, 11, 129. [Google Scholar] [CrossRef]
- Booth, T.C.; Dodge, P.R.; Hepworth, H.K. Rotor-Tip Leakage: Part I—Basic Methodology. ASME J. Eng. Power 1982, 104, 154–161. [Google Scholar] [CrossRef]
- Wadia, A.R.; Booth, T.C. Rotor-Tip Leakage: Part II—Design Optimization Through Viscous Analysis and Experiment. ASME J. Eng. Power 1982, 104, 162–169. [Google Scholar] [CrossRef]
- Moore, J.; Tilton, J.S. Tip Leakage Flow in a Linear Turbine Cascade. ASME J. Turbomach. 1988, 110, 18–26. [Google Scholar] [CrossRef]
- Bindon, J.P. The Measurement and Formation of Tip Clearance Loss. ASME J. Turbomach. 1989, 111, 257–263. [Google Scholar] [CrossRef]
- Yamamoto, A. Interaction Mechanisms Between Tip Leakage Flow and the Passage Vortex in a Linear Turbine Rotor Cascade. ASME J. Turbomach. 1988, 110, 329–338. [Google Scholar] [CrossRef]
- Yamamoto, A. Endwall Flow/Loss Mechanisms in a Linear Turbine Cascade With Blade Tip Clearance. ASME J. Turbomach. 1989, 111, 264–275. [Google Scholar] [CrossRef]
- Heyes, F.J.G.; Hodson, H.P. Measurement and Prediction of Tip Clearance Flow in Linear Turbine Cascades. ASME J. Turbomach. 1993, 115, 376–382. [Google Scholar] [CrossRef]
- Sjolander, S.A.; Cao, D. Measurements of the Flow in an Idealized Turbine Tip Gap. ASME J. Turbomach. 1995, 117, 578–584. [Google Scholar] [CrossRef]
- Lee, S.W.; Moon, H.S.; Lee, S.E. Tip gap height effects on flow structure and heat/mass transfer over plane tip of a high-turning turbine rotor blade. Int. J. Heat Fluid Flow 2009, 30, 198–210. [Google Scholar] [CrossRef]
- Gao, J.; Zheng, Q.; Niu, X.; Yue, G. Aerothermal characteristics of a transonic tip flow in a turbine cascade with tip clearance variations. Appl. Therm. Eng. 2016, 107, 271–283. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Z.; Feng, Z. Unsteady Analysis on the Effects of Tip Clearance Height on Hot Streak Migration Across Rotor Blade Tip Clearance. ASME J. Eng. Gas Turbines Power 2014, 136, 082605. [Google Scholar] [CrossRef]
- Wang, T.; Xuan, Y.; Han, X. The effects of tip gap variation on transonic turbine blade tip leakage flow based on VLES approach. Aerosp. Sci. Technol. 2021, 111, 106542. [Google Scholar] [CrossRef]
- Sjolander, S.A. Overview of Tip-Clearance Effects in Axial Turbines; Lecture Series, 1997–2001, Secondary Flow and Tip-Clearance Flows in Axial Turbines; von Karman Institute for Fluid Dynamics: Sint-Genesius-Rode, Belgium, 1997; pp. 1–29. [Google Scholar]
- Bunker, R.S. Axial Turbine Blade Tips: Function, Design, and Durability. J. Propuls. Power 2006, 22, 271–285. [Google Scholar] [CrossRef]
- Nho, Y.C.; Park, J.S.; Lee, Y.J.; Kwak, J.S. Effects of turbine blade tip shape on total pressure loss and secondary flow of a linear turbine cascade. Int. J. Heat Fluid Flow 2012, 33, 92–100. [Google Scholar] [CrossRef]
- Lee, S.W.; Chae, B.J. Effects of squealer rim height on aerodynamic losses downstream of a high-turning turbine rotor blade. Exp. Therm. Fluid Sci. 2008, 32, 1440–1447. [Google Scholar] [CrossRef]
- Kang, D.B.; Lee, S.W. Effects of squealer rim height on heat/mass transfer on the floor of cavity squealer tip in a high turning turbine blade cascade. Int. J. Heat Mass Transf. 2016, 99, 283–292. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Z.; Li, J.; Song, L. Numerical investigations on the unsteady leakage flow and heat transfer characteristics of the turbine blade squealer tip. J. Glob. Power Propuls. Soc. 2023, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Lee, S.W.; Kwak, H.S. Tip leakage aerodynamics over stepped squealer tips in a turbine cascade. Exp. Therm. Fluid Sci. 2011, 35, 135–145. [Google Scholar] [CrossRef]
- Zhou, C.; Hodson, H.; Tibbott, I.; Stokes, M. Effects of Winglet Geometry on the Aerodynamic Performance of Tip Leakage Flow in a Turbine Cascade. ASME J. Turbomach. 2013, 135, 051009. [Google Scholar] [CrossRef]
- Coull, J.D.; Atkins, N.R.; Hodson, H.P. High Efficiency Cavity Winglets for High Pressure Turbines. In Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, 16–20 June 2014. Paper No. GT2014-25261. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, S.; Li, W.; Wang, S.; Zhou, X. Experiment study of aerodynamic performance for the suction-side and pressure-side winglet-cavity tips in a turbine blade cascade. Exp. Therm. Fluid Sci. 2018, 90, 220–230. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, L.; Jiang, D.; Li, Y.; Wang, S. Experimental and Numerical Investigations for Dual−Cavity Tip Aerodynamic Performance in the Linear Turbine Cascade. Aerospace 2023, 10, 193. [Google Scholar] [CrossRef]
- Huang, M.; Li, Z.; Li, J. Investigations on the aerothermal performance of the turbine blade winglet squealer tip within an uncertainty framework. Aerosp. Sci. Technol. 2022, 123, 107506. [Google Scholar] [CrossRef]
- Kavurmacioglu, L.A.; Senel, C.B.; Maral, H.; Camci, C. Casing grooves to improve aerodynamic performance of a HP turbine blade. Aerosp. Sci. Technol. 2018, 76, 194–203. [Google Scholar] [CrossRef]
- Niu, M.; Zang, S. Experimental and numerical investigations of tip injection on tip clearance flow in an axial turbine cascade. Exp. Therm. Fluid Sci. 2011, 35, 1214–1222. [Google Scholar] [CrossRef]
- Volino, R.J. Control of Tip Leakage in a High Pressure Turbine Cascade Using Tip Blowing. In Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, Republic of Korea, 13–17 June 2016. Paper No. GT2016-56511. [Google Scholar] [CrossRef]
- Chen, S.; Li, W. Effects of combined sweeping jet actuator and winglet tip on aerodynamic performance in a turbine cascade. Aerosp. Sci. Technol. 2022, 131, 107956. [Google Scholar] [CrossRef]
- Yang, R.; Wang, H.; Zhong, D.; Ge, N. Effects of Frequency and Amplitude of Local Dynamic Hump and Inlet Turbulence Intensity on Flow Separation Control in Low-Pressure Turbine. Int. J. Aeronaut. Space Sci. 2023. [Google Scholar] [CrossRef]
- Van Ness, D.K., II; Corke, T.C.; Morris, S.C. Turbine Tip Clearance Flow Control Using Plasma Actuators. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. Paper No. AIAA 2006-21. [Google Scholar] [CrossRef]
- Matsunuma, T.; Segawa, T. Vortex structure for reducing tip leakage flow of linear turbine cascade using dielectric barrier discharge plasma actuator. Aerosp. Sci. Technol. 2023, 136, 108215. [Google Scholar] [CrossRef]
- Yu, J.; Yu, J.; Chen, F.; Wang, C. Numerical study of tip leakage flow control in turbine cascades using the DBD plasma model improved by the parameter identification method. Aerosp. Sci. Technol. 2019, 84, 856–864. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Z.; Chen, F.; Yu, J.; Wang, C. Kriging surrogate model applied in the mechanism study of tip leakage flow control in turbine cascade by multiple DBD plasma actuators. Aerosp. Sci. Technol. 2019, 85, 216–228. [Google Scholar] [CrossRef]
- Yu, J.; Lu, Y.; Wang, Y.; Chen, F.; Song, Y. Experimental study on the plasma actuators for the tip leakage flow control in a turbine cascade. Aerosp. Sci. Technol. 2021, 121, 107195. [Google Scholar] [CrossRef]
- Bons, J.; Benton, S.; Bernardini, C.; Bloxham, M. Active flow control for low-pressure turbines. AIAA J. 2018, 56, 2687–2698. [Google Scholar] [CrossRef]
- Moreau, E. Airflow control by non-thermal plasma actuators. J. Phys. D Appl. Phys. 2007, 40, 605–636. [Google Scholar] [CrossRef]
- Corke, T.C.; Post, M.L.; Orlov, D.M. SDBD plasma enhanced aerodynamics: Concepts, optimization and applications. Prog. Aerosp. Sci. 2007, 43, 193–217. [Google Scholar] [CrossRef]
- Corke, T.C.; Enloe, C.L.; Wilkinson, S.P. Dielectric Barrier Discharge Plasma Actuators for Flow Control. Annu. Rev. Fluid Mech. 2010, 42, 505–529. [Google Scholar] [CrossRef]
- Wang, J.-J.; Choi, K.-S.; Feng, L.-H.; Jukes, T.N.; Whalley, R.D. Recent developments in DBD plasma flow control. Prog. Aerosp. Sci. 2013, 62, 52–78. [Google Scholar] [CrossRef]
- Bernal-Orozco, R.A.; Carvajal-Mariscal, I.; Huerta-Chavez, O.M. Performance of DBD Actuator Models under Various Operating Parameters and Modifications to Improve Them. Fluids 2023, 8, 112. [Google Scholar] [CrossRef]
- Nicassio, F.; Bonuso, S.; Scarselli, G.; De Giorgi, M. Coupled fluid-structure simulations and experiments of DBD plasma actuator for damping of plate vibrations. Aerosp. Sci. Technol. 2023, 133, 108151. [Google Scholar] [CrossRef]
- Yu, H.; Cui, X.; Li, G.; Zheng, J. Numerical Investigation of Flow Separation Control over Rotor Blades Using Plasma Actuator. AIAA J. 2023, 61, 1151–1167. [Google Scholar] [CrossRef]
- Huang, J.; Corke, T.; Thomas, F. Plasma Actuators for Separation Control of Low Pressure Turbine Blades. In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003. AIAA Paper, No. 2003-1027. [Google Scholar] [CrossRef]
- Hultgren, L.; Ashpis, D. Demonstration of Separation Delay with Glow Discharge Plasma Actuators. In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003. AIAA Paper, No. 2003-1025. [Google Scholar] [CrossRef] [Green Version]
- List, J.; Byerley, A.; McLaughlin, T.; Van Dyken, R. Using a plasma actuator to control laminar separation on a linear cascade turbine blade. In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003. AIAA Paper, No. 2003-1026. [Google Scholar] [CrossRef]
- Boxx, I.; Newcamp, J.; Franke, M.E.; Woods, N.M.; Rivir, R.B. A PIV Study of a Plasma Discharge Flow-Control Actuator on a Flat Plate in an Aggressive Pressure Induced Separation. In Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air, Barcelona, Spain, 8–11 May 2006. ASME Paper, No. GT2006-91044. [Google Scholar] [CrossRef]
- Pescini, E.; Marra, F.; De Giorgi, M.; Francioso, L.; Ficarella, A. Investigation of the boundary layer characteristics for assessing the DBD plasma actuator control of the separated flow at low Reynolds numbers. Exp. Therm. Fluid Sci. 2016, 81, 482–498. [Google Scholar] [CrossRef]
- Pescini, E.; De Giorgi, M.; Suma, A.; Francioso, L.; Ficarella, A. Separation control by a microfabricated SDBD plasma actuator for small engine turbine applications: Influence of the excitation waveform. Aerosp. Sci. Technol. 2018, 76, 442–454. [Google Scholar] [CrossRef]
- Li, G.; Wang, Q.; Huang, Y.; Zhang, H. Large eddy simulation of film cooling effectiveness on a turbine vane pressure side with a saw-tooth plasma actuator. Aerosp. Sci. Technol. 2021, 112, 106615. [Google Scholar] [CrossRef]
- Yaras, M.I.; Sjolander, S.A. Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades: Part I—Tip Gap Flow. ASME J. Turbomach. 1992, 114, 652–659. [Google Scholar] [CrossRef]
- Yaras, M.I.; Sjolander, S.A.; Kind, R.J. Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades: Part II—Downstream Flow Field and Blade Loading. ASME J. Turbomach. 1992, 114, 660–667. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of blades, N | 6 |
Chord length, C (mm) | 58.65 |
Axial chord length, Cax (mm) | 49.43 |
Blade height, H (mm) | 75.00 |
Blade pitch, S (mm) | 35.47 |
Aspect ratio, H/C | 1.54 |
Solidity, C/S | 1.16 |
Inlet flow angle, α1 (°) | 51.86 |
Exit flow angle, α2 (°) | 58.74 |
Turning angle, α1 + α2 (°) | 110.60 |
Stagger angle, ξ (°) | 33.43 |
Tip clearance size, τ (mm) | 0.0–3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsunuma, T.; Segawa, T. Active Flow Control for Passage Vortex Reduction in a Linear Turbine Cascade with Various Tip Clearance Sizes Using a Dielectric Barrier Discharge Plasma Actuator. Aerospace 2023, 10, 641. https://doi.org/10.3390/aerospace10070641
Matsunuma T, Segawa T. Active Flow Control for Passage Vortex Reduction in a Linear Turbine Cascade with Various Tip Clearance Sizes Using a Dielectric Barrier Discharge Plasma Actuator. Aerospace. 2023; 10(7):641. https://doi.org/10.3390/aerospace10070641
Chicago/Turabian StyleMatsunuma, Takayuki, and Takehiko Segawa. 2023. "Active Flow Control for Passage Vortex Reduction in a Linear Turbine Cascade with Various Tip Clearance Sizes Using a Dielectric Barrier Discharge Plasma Actuator" Aerospace 10, no. 7: 641. https://doi.org/10.3390/aerospace10070641
APA StyleMatsunuma, T., & Segawa, T. (2023). Active Flow Control for Passage Vortex Reduction in a Linear Turbine Cascade with Various Tip Clearance Sizes Using a Dielectric Barrier Discharge Plasma Actuator. Aerospace, 10(7), 641. https://doi.org/10.3390/aerospace10070641