A Novel Composite Helicopter Tail Rotor Blade with Enhanced Mechanical Properties
Abstract
:1. Introduction
2. Description of the Studied Blade
- The skin of the blade is made of a carbon-fibre-reinforced polymer, with Derakane Momentum 470–300 epoxy resin utilized for the composite matrix and a twill 2/2 carbon fibre weave [0/90], model GG285T, used for reinforcing the composite. The epoxy resin is characterized by very good mechanical properties, high resistance to chemicals, and great malleability. The carbon fibre weave disposes of 3000 fibres per filament and a linear density of 200 tex.
- The spar of the blade, as the element that offers greater strength to the structure, is made of T300 carbon fibres (roving), oriented in accordance with the length of the blade. These fibres are recognized for their outstanding performance, quality, and consistency in processing and have been used in aerospace applications over the past 30 years, thus being adequate for this structure. The carbon fibre roving is embedded with the same epoxy resin as the skin in order to produce a high-strength unitary component.
- The honeycomb core of the blade is manufactured from a thermoplastic-extruded chlorinated polyethylene filament, model CPE CF112 Carbon. The filament exhibits satisfactory mechanical properties because it contains milled carbon microfibres. This model also offers a good quality–price ratio for the designated purpose, being adequate for fatigue testing.
3. Manufacturing and Testing of the New Blade
3.1. The Manufacturing Process
- Manufacturing a two-part mould;
- Manufacturing a temporary model of the blade, which is necessary for adjusting the composite blade inside the mould;
- Manufacturing the skin of the blade inside each of the two moulds;
- Positioning the semi-honeycomb core in each of the two moulds;
- Manufacturing the spar of the blade, positioned in the leading-edge area;
- uniting the two moulds and locking them in place;
- Extracting the composite blade from the moulds and applying surface finishing operations.
3.2. Experimental Setup and Testing
4. The Finite Element Model
5. Discussion of the Results
6. Complex FEA: Aerodynamic Loading of the Tail Rotor Blade
- α = +2.5°—represents the maximum positive incidence that the tail rotor blade can have, at any flight regime, operated by the helicopter pilot;
- α = 0°—the incidence at which the pressure distribution is the same on both sides of the blade;
- α = −6.5°—represents the value at which the helicopter maintains its stable position on the yaw axis;
- α = −15.5°—is the maximum negative value of the incidence that the blade can achieve during flight.
- Air pressure—101.325 kPa;
- Fluid temperature—15 °C;
- Fluid density—1.225 kg/m3.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arena, M.; Chiariello, A.; Castaldo, M.; Di Palma, L. Vibration Response Aspects of a Main Landing Gear Composite Door Designed for High-Speed Rotorcraft. Aerospace 2021, 8, 52. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, L.; Tang, X.; Huang, D.; Zhang, J. Dynamic Response of a Composite Fan Blade Excited Instantaneously by Multiple MFC Actuators. Aerospace 2022, 9, 301. [Google Scholar] [CrossRef]
- Miller, A.G.; Lovell, D.T.; Seferis, J.C. The evolution of an aerospace material: Influence of design, manufacturing and in-service performance. Compos. Struct. 1994, 27, 193–206. [Google Scholar] [CrossRef]
- Stojkovic, M.; Butt, J. Industry 4.0 Implementation Framework for the Composite Manufacturing Industry. J. Compos. Sci. 2022, 6, 258. [Google Scholar] [CrossRef]
- Linganiso, L.Z.; Anandjiwala, R.D. Chapter 4—Fibre-reinforced laminates in aerospace engineering. In Advanced Composite Materials for Aerospace Engineering, Processing, Properties and Applications; Rana, S., Fangueiro, R., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 101–127. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, K.J. Overview of Polyamide Resins and Composites: A Review. Elastomers Compos. 2016, 51, 317–341. [Google Scholar] [CrossRef] [Green Version]
- Nunes, J.P.; Silva, J.F. Chapter 5—Sandwiched composites in aerospace engineering. In Advanced Composite Materials for Aerospace Engineering, Processing, Properties and Applications; Rana, S., Fangueiro, R., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 129–174. [Google Scholar] [CrossRef] [Green Version]
- Giurgiutiu, V. Chapter 1—Introduction. In Structural Health Monitoring of Aerospace Composites; Academic Press: Cambridge, MA, USA, 2016; pp. 1–23. Available online: https://www.sciencedirect.com/book/9780124096059/structural-health-monitoring-of-aerospace-composites (accessed on 8 May 2023).
- The American Composites Manufacturers Association (ACMA). Discover Composites. Available online: https://discovercomposites.com/transportation/commercial-aircraft/# (accessed on 9 May 2023).
- Gardner Business Media Inc. Composites World. Available online: https://www.compositesworld.com/articles/skinning-the-f-35-fighter (accessed on 12 May 2023).
- Global Security.org. F-22 Raptor. Available online: https://www.globalsecurity.org/military/systems/aircraft/f-22.htm (accessed on 12 May 2023).
- Helicopter Maintenance Magazine. Carbon Fiber—A New Spin for Main and Tail Rotor Blades. Available online: https://helicoptermaintenancemagazine.com/article/carbon-fiber-%E2%80%93-new-spin-main-and-tail-rotor-blades (accessed on 12 May 2023).
- Helicopter Maintenance Magazine. From Wood to Composite Materials the Evolution of the Rotor Blade. Available online: https://helicoptermaintenancemagazine.com/article/wood-composite-materials-evolution-rotor-blade (accessed on 12 May 2023).
- ExpertsMind.Com. Propeller Construction, Other Engineering. Available online: http://www.expertsmind.com/questions/propeller-construction-30112157.aspx (accessed on 12 May 2023).
- Kozaczuk, K.J. Composite technology development based on helicopter rotor blades. Aircr. Eng. Aerosp. Technol. 2018, 92, 273–284. [Google Scholar] [CrossRef]
- Rasuo, B. Helicopter Tail Rotor Blade from Composite Materials: An Experience. SAE Int. J. Aerosp. 2011, 4, 828–838. [Google Scholar] [CrossRef]
- Rasuo, B. Experimental Techniques for Evaluation of Fatigue Characteristics of Laminated Constructions from Composite Materials: Full-Scale Testing of the Helicopter Rotor Blades. J. Test. Eval. 2010, 39, JTE102768. [Google Scholar] [CrossRef]
- Luczak, M.; Peeters, B.; Dziedziech, K. Static and dynamic testing of the full scale helicopter rotor blades. In Proceedings of the ISMA2010-USD2010—24th International Conference on Noise and Vibration Engineering (ISMA2010) & 3rd International Conference on Uncertainty in Structural Dynamics (USD2010), Leuven, Belgium, 20–22 September 2010; pp. 2131–2143. Available online: https://past.isma-isaac.be/downloads/isma2010/papers/isma2010_0343.pdf (accessed on 17 May 2023).
- Kliza, R.; Scislowski, K.; Siadkowska, K.; Padyjasek, J.; Wendeker, M. Strength analysis of a prototype composite helicopter rotor blade spar. Appl. Comput. Sci. 2022, 18, 5–19. [Google Scholar] [CrossRef]
- Sudhir Sastry, Y.B.; Bhargavi Rachana, I.; Durga Rao, K. Stress Analysis of Helicopter Composite Blade Using Finite Element Analysis. Int. J. Eng. Res. Technol. 2013, 2, 1291–1299. Available online: https://www.ijert.org/research/stress-analysis-of-helicopter-composite-blade-using-finite-element-analysis-IJERTV2IS120036.pdf (accessed on 18 May 2023).
- Vasovic Maksimovic, I.V.; Maksimovic, K.S.; Maksimovic, M.S.; Maksimovic, S.M. Strength Analysis of Helicopter Tail Rotor Blades Made from Composite Materials. In Experimental Research and Numerical Simulation in Applied Sciences, Proceedings of the 18th International Symposium of Organizational Sciences (SymOrg 2022), Belgrade, Serbia, 11–14 June 2022; Mitrovic, N., Mladenovic, G., Mitrovic, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; Volume 564, pp. 97–113. [Google Scholar] [CrossRef]
- Filippi, M.; Zappino, E.; Carrera, E.; Castanie, B. Effective Static and Dynamic Finite Element Modeling of a Double Swept Composite Rotor Blade. J. Am. Helicopter Soc. 2020, 65, 1–12. [Google Scholar] [CrossRef]
- Hou, W.; Zhang, W.; Wang, X.; Xing, J. Deformation analysis of composite rotor blades for a helicopter. J. Aircr. 2012, 49, 2018–2022. [Google Scholar] [CrossRef]
- Anoshkin, A.N.; Barkanov, E.; Pisarev, P.V. Calculation and Experimental Research of the Mechanical Deformation of a Helicopter Blade Made of Composite Materials with Embedded Piezoactuators. AIP Conf. Proc. 2020, 2310, 020020. [Google Scholar] [CrossRef]
- Balasko, M.; Svab, M.; Molnar, G.; Veres, I. Classification of defects in honeycomb composite structure of helicopter rotor blades. Nucl. Instrum. Methods Phys. Res. A 2005, 542, 45–51. [Google Scholar] [CrossRef]
- Rayavarapu, V.K. State-of-the-Art Finite Element Modeling of Rotorcraft Main Rotor Blade for Bird Strike Damage Analysis. J. Fail. Anal. Prev. 2018, 18, 1369–1378. [Google Scholar] [CrossRef]
- Jang, J.H.; Ahn, S.H. Numerical Analysis of Bird Strike Resistance of Helicopter Composite Rotor Blade. J. Eng. Appl. Sci. 2019, 14, 6971–6981. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.H.; Jung, S.N. Optimal Structural Design of Composite Helicopter Blades using a Genetic Algorithm-based Optimizer PSGA. Compos. Res. 2022, 35, 340–346. (In Korean) [Google Scholar] [CrossRef]
- Steininger, R.; Barakos, G.N.; Woodgate, M.A. Numerical analysis of HVAB and STAR rotor blades using HMB3. In Proceedings of the AIAA SCITECH 2023 Forum, Session: Special Session: Rotor-in-Hover Simulation I, National Harbor, MD, USA, 23–27 January 2023. [Google Scholar] [CrossRef]
- Qaderi, S.; Ebrahimi, F.; Vinyas, M. Dynamic analysis of multi-layered composite beams reinforced with graphene platelets resting on two-parameter viscoelastic foundation. Eur. Phys. J. Plus 2019, 134, 339. [Google Scholar] [CrossRef]
- Hadăr, A.; Baciu, F.; Voicu, A.D.; Vlăsceanu, D.; Tudose, D.I.; Adetu, C. Mechanical Characteristics Evaluation of a Single Ply and Multi-Ply Carbon Fiber-Reinforced Plastic Subjected to Tensile and Bending Loads. Polymers 2022, 14, 3213. [Google Scholar] [CrossRef]
- Baciu, F.; Hadăr, A.; Voicu, A.D.; Vlăsceanu, D.; Tudose, D.I. Experimental and Numerical Analysis of Chlorinated Polyethylene Honeycomb Mechanical Performance as Opposed to an Aluminum Alloy Design. Materials 2022, 15, 8034. [Google Scholar] [CrossRef]
- Voicu, A.D.; Hadăr, A.; Vlăsceanu, D. Validation of a Numerical Fluid Flow Analysis for a Helicopter Tail Rotor Blade Using a Subsonic Wind Tunnel. Macromol. Symp. 2020, 389, 1900099. [Google Scholar] [CrossRef]
- Castro Composites. Technical Data Sheet for GG285T Fabric. Available online: https://www.castrocompositesshop.com/en/index.php?controller=attachment&id_attachment=935 (accessed on 25 May 2023).
- Derakane™|INEOS Composites. Technical Data Sheet for the Momentum 470-300 Epoxy Resin. Available online: https://3.imimg.com/data3/IU/GR/MY-3370540/derakane-momentum-470-300.pdf (accessed on 25 May 2023).
- Toray Carbon Fibers Europe S.A. Technical Data Sheet for T300/FT300 High Performance Carbon Fiber. Available online: https://toray-cfe.com/wp-content/uploads/2020/12/toray-torayca-t300ft300-haute-resistance.pdf (accessed on 25 May 2023).
- Fillamentum Addi(c)tive Polymers. Technical Data Sheet for CPE CF112 Carbon. Available online: https://fillamentum.com/wp-content/uploads/2020/10/TDS_CPE-CF112-Carbon.pdf (accessed on 25 May 2023).
- ASTM D3039/D3039M-00; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2017. Available online: https://www.astm.org/d3039_d3039m-08.html (accessed on 11 May 2023).
- ASTM C365/C365M-22; Standard Test Method for Flatwise Compressive Properties of Sandwich Cores. ASTM International: West Conshohocken, PA, USA, 2022. Available online: https://www.astm.org/c0365_c0365m-22.html (accessed on 11 May 2023).
- Voicu, A.D. Experimental and Theoretical Study of the Transition Towards a Composite Configuration for the IAR330 Tail Rotor Blade. Ph.D. Thesis, University Politehnica of Bucharest, Bucharest, Romania, 2022. Available online: https://upb.ro/studiul-teoretic-si-experimental-privind-tranzitia-palei-anticuplu-a-elicopterului-iar330-catre-o-configuratie-constructiva-compozita-experimental-and-theoretical-study-of-the-transition-towards-a-c/ (accessed on 10 May 2023). (In Romanian).
- Al-Khudairi, O.; Hadavinia, H.; Little, C.; Gillmore, G.; Greaves, P.; Dyer, K. Full-Scale Fatigue Testing of a Wind Turbine Blade. Materials 2017, 10, 1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, P.H.; Berring, P.; Pavese, C.; Branner, K. Rotor Blade Full-Scale Fatigue Testing Technology and Research; DTU Wind Energy: Roskilde, Denmark, 2013; Available online: https://orbit.dtu.dk/files/118186769/Rotor_blade_full_scale_fatigue.pdf (accessed on 10 May 2023).
- Blaest. Blade Test Centre. Available online: https://blaest.com/fatigue-test/ (accessed on 26 May 2023).
- ANSYS Inc. ANSYS Workbench User’s Guide, Release 2021 R2; ANSYS Inc.: Canonsburg, PA, USA, 2022; Available online: https://www.ansys.com/ (accessed on 16 May 2023).
Material | Property Type | Value |
---|---|---|
GG 285T twill weave 2/2 [34] | Fabric type | Twill 2/2 |
Ply thickness | 0.28 mm ± 2.5% | |
Distribution | 600 g of filament | |
Fibre type | High-resistance carbon fibre 3k—200 tex | |
Thread count | 7.0 ends/cm | |
Weight distribution | 142 g/m2 | |
(50% warp, 50% weft) | ||
Density | 1.79 g/cm3 | |
Derakane Momentum 470–300 epoxy resin [35] | Dynamic viscosity | 325 mPa∙s |
Kinematic viscosity | 300 cSt | |
Density | 1.17 g/cm3 | |
Heat distortion temperature | 150 °C | |
Glass transition temperature | 165 °C | |
T300 carbon fibre roving [36] | Density | 1.76 g/cm3 |
Filament diameter | 7 μm | |
3K linear roving density | 198 g/1000 m | |
Coefficient of thermal expansion | 0.41 × 10−6/°C | |
Specific heat | 0.19 Cal/g∙C | |
Thermal conductivity | 0.025 Cal/cm∙s∙°C | |
Electric resistivity | 1.7 × 10−3 Ω∙cm | |
Chemical composition | 93% carbon Na + K < 50 ppm | |
CPE CF112 Carbon filament embedded with milled carbon microfibres [37] | Density | 1.16 g/cm3 |
Diameter tolerance | ±0.10 mm | |
Weight | 600 g filament (+250 g roll) | |
Printing temperature | 250–270 °C | |
Hot pad | 70–85 °C | |
Bed adhesive | Magigoo, 3Dlac | |
Part cooling fan | 0–15% | |
Printing speed | 20–40 mm/s |
Blade Component Material | Property Type | Mechanical Property |
---|---|---|
Skin— carbon-fibre-reinforced polymer (3K GG 285 T carbon fibre weave embedded with Derakane Momentum 470–300 epoxy resin) | Tensile properties | Young’s modulus—41,733.38 MPa |
Yield Strength—448.58 MPa | ||
Tensile strength—480.57 MPa | ||
Percent elongation at break—1.429% | ||
Poisson’s ratio—0.353 | ||
Spar— carbon-fibre-reinforced polymer (T300 carbon fibre roving embedded with Derakane Momentum 470–300 epoxy resin) | Tensile properties | Young’s modulus—65,839.65 MPa |
Yield strength—385.17 MPa | ||
Tensile strength—587.77 MPa | ||
Percent elongation at break—1.037% | ||
Poisson’s ratio—0.35 | ||
Honeycomb core with hexagonal cells—CPE CF112 Carbon filament embedded with milled carbon microfibres | Tensile properties (Printed flatwise) | Young’s modulus—4448.10 MPa |
Yield strength—40.26 MPa | ||
Tensile strength—47.29 MPa | ||
Percent elongation at break—1.85% | ||
Poisson’s ratio—0.388 | ||
Tensile properties (Printed sidewise) | Young’s modulus—4783.22 MPa | |
Yield strength—38.86 MPa | ||
Tensile strength—44.97 MPa | ||
Percent elongation at break—1.64% | ||
Poisson’s ratio—0.316 | ||
Tensile properties (Printed lengthwise) | Young’s modulus—3175.97 MPa | |
Yield strength—29.56 MPa | ||
Tensile strength—31.50 MPa | ||
Percent elongation at break—1.38% | ||
Poisson’s ratio—0.225 | ||
Compression properties | Compression modulus—3184.90 MPa | |
Yield strength in compression—29.48 MPa | ||
Ultimate strength in compression—31.40 MPa | ||
Percent shortening at break—1.38% |
Test Number | Maximum Force (N) | Displacement (mm) | Time (s) |
---|---|---|---|
Test-1 | 10.049 | 10 | 300.77 |
Test-2 | 10.729 | 10 | 300.66 |
Test-3 | 10.852 | 10 | 300.85 |
Test-4 | 11.714 | 10 | 300.76 |
Test-5 | 12.092 | 10 | 300.45 |
Average | 11.087 | 10 | 300.70 |
Tail Rotor Blade | Maximum Force (N) |
---|---|
Composite tail rotor blade (mean value) | 11.087 |
FEA of composite tail rotor blade | 10.405 |
Error (%) | 6.15 |
Blade Component | Percentage of the Total Blade Volume | Metal Blade (kg) | Composite Blade (kg) | Mass Reduction (%) |
---|---|---|---|---|
Spar | 21.03% | 1.6075 | 1.0478 | 34.82 |
Honeycomb core | 20.32% | 0.5724 | 0.2478 | 56.71 |
Skin | 58.65% | 0.5583 | 0.3052 | 45.33 |
Total | 100% | 2.7383 | 1.6008 | 41.54 |
Blade Incidence α (°) | Maximum Equivalent Elastic Strain | Maximum Total Displacement (mm) | Maximum von Mises Stress (MPa) |
---|---|---|---|
+2.5 | 0.00022 | 0.095 | 1.68 |
0 | 0.00343 | 1.412 | 24.90 |
−6 | 0.00923 | 3.807 | 66.65 |
−15.5 | 0.02862 | 11.725 | 207.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadăr, A.; Voicu, A.-D.; Baciu, F.; Vlăsceanu, D.; Tudose, D.-I.; Pastramă, Ş.-D. A Novel Composite Helicopter Tail Rotor Blade with Enhanced Mechanical Properties. Aerospace 2023, 10, 647. https://doi.org/10.3390/aerospace10070647
Hadăr A, Voicu A-D, Baciu F, Vlăsceanu D, Tudose D-I, Pastramă Ş-D. A Novel Composite Helicopter Tail Rotor Blade with Enhanced Mechanical Properties. Aerospace. 2023; 10(7):647. https://doi.org/10.3390/aerospace10070647
Chicago/Turabian StyleHadăr, Anton, Andrei-Daniel Voicu, Florin Baciu, Daniel Vlăsceanu, Daniela-Ioana Tudose, and Ştefan-Dan Pastramă. 2023. "A Novel Composite Helicopter Tail Rotor Blade with Enhanced Mechanical Properties" Aerospace 10, no. 7: 647. https://doi.org/10.3390/aerospace10070647
APA StyleHadăr, A., Voicu, A. -D., Baciu, F., Vlăsceanu, D., Tudose, D. -I., & Pastramă, Ş. -D. (2023). A Novel Composite Helicopter Tail Rotor Blade with Enhanced Mechanical Properties. Aerospace, 10(7), 647. https://doi.org/10.3390/aerospace10070647