Feasibility and Performance Analysis of High-Energy-Density Hydrocarbon-Fueled Turboexpander Engine
Abstract
:1. Introduction
2. Working Principle and Feasibility of the Turboexpander Engine
2.1. Working Principle of Turboexpander Engine
2.2. Feasibility of Turboexpander Engine
3. Model of HED Hydrocarbon-Fueled Turboexpander Engine
3.1. Intake
3.2. Turbomachinery
3.3. Fuel
3.4. Heat Exchanger
3.5. Combustor
3.6. Nozzle and Performance
4. Parametric Study
4.1. Cycle Parameters of Hydrocarbon-Fueled Turboexpander Engine
4.2. Influence of the Design Parameters
4.3. Sensitivity of Non-Dimensional Parameters of Turbomachinery and Heat Exchange
4.4. Full-Range Performance
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Alphabetic letters | |
constant-pressure heat capacity | |
f | fuel-to-air ratio |
chemical stoichiometric ratio | |
F | thrust |
specific thrust | |
g | acceleration of gravity |
h | specific enthalpy |
H | altitude |
lower heating value | |
specific impulse | |
K | turbine work output capacity |
mass flow rate | |
Mach number | |
P | pressure |
rate of heat exchange | |
s | entropy |
T | temperature |
V | velocity |
power of turbomachinery components | |
Greek letters | |
efficiency | |
specific heat ratio | |
pressure ratio | |
total pressure recovery coefficient | |
equivalence ratio | |
air mass flow capture coefficient of the intake | |
Subscripts | |
B | combustor or burning process |
C | compressor |
parameter under frozen hypothesis | |
heat exchanger | |
injection | |
I | ideal or theoretical value |
inlet | |
N | nozzle |
propulsive | |
P | pump |
t | stagnation values |
thermal | |
total | |
T | turboexpander |
Symbols | |
ATR | Air Turborocket |
ATREX | Air Turboramjet with Expander |
BOV | Balloon-Based Operation Vehicle |
exo-THD | Exo-tetrahydrodicyclopentadiene |
GG | Gas Generator |
HED | High Energy Density |
ISAS | Japanese Institute of Space and Astronautical Science |
LHV | Lower Heating Value |
MCH | Methylcyclohexane |
PCTJ | Pre-Cooled Turbojet |
PDC | Pulse Detonation Cycle |
PFPMT | Pre-Cooled and Fuel-Rich Pre-Burned Mixed-Flow Turbofan |
RBCC | Rocket-Based Combined Cycle |
SSTO | Single Stage to Orbit |
TBCC | Turbine-Based Combined Cycle |
References
- Zuo, F.Y.; Mölder, S. Hypersonic wavecatcher intakes and variable-geometry turbine based combined cycle engines. Prog. Aerosp. Sci. 2019, 106, 108–144. [Google Scholar] [CrossRef]
- Zhang, T.T.; Wang, Z.G.; Huang, W.; Chen, J.; Sun, M.B. The overall layout of rocket-based combined-cycle engines: A review. J. Zhejiang Univ.-Sci. A 2019, 20, 163–183. [Google Scholar] [CrossRef]
- Briggs, M.; Campbell, J.; Andrus, S.; Burgner, G. Synthesis and performance of an Air-TurboRamjet-propelled supersonictarget vehicle. In Proceedings of the 22nd Aerospace Sciences Meeting, Reno, NV, USA, 9–12 January 1984; p. 75. [Google Scholar] [CrossRef]
- Bussi, G.; Colasurdo, G.; Pastrone, D. Analysis of air-turborocket performance. J. Propuls. Power 1995, 11, 950–954. [Google Scholar] [CrossRef]
- Christensen, K. Air Turborocket/Vehicle Performance Comparison. J. Propuls. Power 1999, 15, 706–712. [Google Scholar] [CrossRef]
- Nan, X.; Liu, Y.; Ma, Y.; Ma, J. Thermodynamic process and operating characteristics of air turbo rocket engine. Acta Aerodyn. Sin. 2022, 40, 181–189. [Google Scholar] [CrossRef]
- Mizobata, K.; Kimura, H.; Sugiyama, H.; Sato, T.; Kobayashi, H. Conceptual Design of Flight Demonstrator Vehicles for the ATREX Engines. In Proceedings of the 12th AIAA International Space Planes and Hypersonic Systems and Technologies, Norfolk, VA, USA, 15–19 December 2003; p. 7028. [Google Scholar] [CrossRef]
- Sato, T.; Tanatsugu, N.; Hatta, H.; Goto, K.; Kobayashi, H.; Omi, J.; Tomike, J. Development study of the ATREX engine for TSTO spaceplane. In Proceedings of the 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference, Kyoto, Japan, 24–27 April 2001; p. 1839. [Google Scholar] [CrossRef]
- Fujita, K.; Tsuboi, N.; Sawai, S.; Kobayashi, H.; Miyaji, K.; Uchiyama, T. Aerodynamic Design of Balloon-Based Operation Vehicle for Precooled Turbojet Engine Demonstration. In Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, OH, USA, 28 April–1 May 2008; p. 2658. [Google Scholar] [CrossRef]
- Taguchi, H.; Hongoh, M.; Kojima, T.; Saito, T. Mach 4 Performance Evaluation of Hypersonic Pre-Cooled Turbojet Engine. In Proceedings of the 22nd AIAA International Space Planes and Hypersonics Systems and Technologies Conference, Orlando, FL, USA, 17–19 September 2018; p. 5203. [Google Scholar] [CrossRef]
- Taguchi, H.; Kobayashi, H.; Kojima, T.; Ueno, A.; Hongoh, M.; Harada, K.; Aoki, T. Hypersonic Flight Experiment Plan of Pre-Cooled Turbojet Engine. In Proceedings of the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, Tours, France, 24–28 September 2012; p. 5840. [Google Scholar] [CrossRef]
- Taguchi, H.; Harada, K.; Kobayashi, H.; Hongoh, M.; Masaki, D.; Nishida, S. Mach 4 Simulating Experiment of Pre-Cooled Turbojet Engine Using Liquid Hydrogen. Aerospace 2022, 9, 39. [Google Scholar] [CrossRef]
- Fernandez-Villace, V.; Paniagua, G. Numerical Model of a Variable-Combined-Cycle Engine for Dual Subsonic and Supersonic Cruise. Energies 2013, 6, 839–870. [Google Scholar] [CrossRef]
- Tanbay, T.; Durmayaz, A. Energy, exergy and ecological analysis and multiobjective optimization of the hydrogen-fueled Scimitar engine with fixed nozzle geometry. Int. J. Hydrog. Energy 2022, 47, 19876–19887. [Google Scholar] [CrossRef]
- Fernandez-Villace, V.; Paniagua, G. Simulation of a Variable-Combined-Cycle Engine for Dual Subsonic and Supersonic Cruise. In Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Diego, CA, USA, 31 July–3 August 2011. [Google Scholar] [CrossRef]
- Li, J.; Liu, K.; Gao, Y.; Liu, S.; Wang, W.; Liu, Y. Combustion Characteristics Experimental Study of Solid Hydrocarbon Propellant for Air-Turbo Rocket. J. Propuls. Power 2018, 34, 1198–1205. [Google Scholar] [CrossRef]
- Rodríguez-Miranda, I.; Fernández-Villacé, V.; Paniagua, G. Modeling, Analysis, and Optimization of the Air-Turborocket Expander Engine. J. Propuls. Power 2013, 29, 1266–1273. [Google Scholar] [CrossRef]
- Zhao, W.; Huang, C.; Zhao, Q.; Ma, Y.; Xu, J. Performance analysis of a pre-cooled and fuel-rich pre-burned mixed-flow turbofan cycle for high speed vehicles. Energy 2018, 154, 96–109. [Google Scholar] [CrossRef]
- Yao, Z.; Guo, Y.; Liu, M.; Zhou, S. Performance study of a pre-cooled turbo-rocket combined engine under a wide Mach number of 0∼5. Case Stud. Therm. Eng. 2022, 38, 102307. [Google Scholar] [CrossRef]
- Yao, Z.; Guo, Y.; Niu, J.; Jin, Z.; Yu, T.; Guo, B.; Pu, W.; Wei, X.; Jin, F.; Li, B.; et al. Optimization Design of the NUAA-PTRE: A New Pre-Cooled Turbine Engine Adapting to 0∼5 Mach Number. Aerospace 2023, 10, 185. [Google Scholar] [CrossRef]
- Luo, S.; Sun, Y.; Song, J.; Liu, J. Performance analysis of a hybrid pulse detonation engine using liquid hydrogen as fuel. Int. J. Hydrogen Energy 2022, 47, 21537–21551. [Google Scholar] [CrossRef]
- Luo, J.; Yang, S.; Zhang, J.; Li, J.; Xiang, Z.; Zhang, W. Performance Analysis of Expander Cycle Air-Turborocket with Methane-Precooled. J. Propuls. Technol. 2021, 42, 1964–1975. [Google Scholar] [CrossRef]
- Heiser, W.H.; Pratt, D.T. Hypersonic Airbreathing Propulsion; AIAA: Reston, VA, USA, 1994. [Google Scholar]
- Li, H.; Qin, J.; Jiang, Y.; Zhou, W.; Bao, W.; Huang, H. Experimental study on the thermodynamic characteristics of the high temperature hydrocarbon fuel in the cooling channel of the hypersonic vehicle. Acta Astronaut. 2019, 155, 63–79. [Google Scholar] [CrossRef]
- Xu, Q.; Li, H.; Feng, Y.; Li, X.; Ling, C.; Zhou, C.; Qin, J. Dynamic thermo-physical characteristics of high temperature gaseous hydrocarbon fuel thermal power generation for regeneratively cooled hypersonic propulsion system. Energy 2020, 211, 118722. [Google Scholar] [CrossRef]
- Zhang, D.; Qin, J.; Feng, Y.; Ren, F.; Bao, W. Performance evaluation of power generation system with fuel vapor turbine onboard hydrocarbon fueled scramjets. Energy 2014, 77, 732–741. [Google Scholar] [CrossRef]
- Qin, J.; Bao, W.; Zhang, S.; Zhou, W. Comparison during a scramjet regenerative cooling and recooling cycle. J. Thermophys. Heat Transf. 2012, 26, 612–618. [Google Scholar] [CrossRef]
- Li, H.; Qin, J.; Jiang, Y.; Zhang, D.; Cheng, K.; Bao, W.; Huang, H. Experimental and theoretical investigation of power generation scheme driven by thermal cracked gaseous hydrocarbon fuel for hypersonic vehicle. Energy Convers. Manag. 2018, 165, 334–343. [Google Scholar] [CrossRef]
- Li, H.; Qin, J.; Bao, W.; Huang, H. Performance improvement of gaseous hydrocarbon fuel driven thermal power generation systems for hypersonic vehicles. Energy Convers. Manag. 2019, 199, 111949. [Google Scholar] [CrossRef]
- Zhang, R. Aerodynamic Performance Research on Ultra High Expansion Ratio Turbine (in Chinese). Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2014. [Google Scholar]
- Waters, M.H. Turbojet-Ramjet Propulsion System for All-Body Hypersonic Aircraft; National Aeronautics and Space Administration: Washington, DC, USA, 1971.
- Zhang, R. Research on Air Turbo Ramjet Expander Engine Component Matching and Performance Optimization (in Chinese). Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2018. [Google Scholar]
- Liu, G.; Jia, X.; Tian, Y.; Gong, S.; Wang, L.; Zhang, X. Preparations and remarkable catalytic cracking performances of Pt@ FGS/JP-10 nanofluids. Fuel 2019, 252, 228–237. [Google Scholar] [CrossRef]
- Shah, R.K.; Sekulic, D.P. Fundamentals of Heat Exchanger Design; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Wang, Y.; Cheng, K.; Tang, J.; Liu, X.; Bao, W. Analysis of the maximum flight Mach number of hydrocarbon-fueled scramjet engines under the flight cruising constraint and the combustor cooling requirement. Aerosp. Sci. Technol. 2020, 98, 105594. [Google Scholar] [CrossRef]
- Yu, W.; Zhou, W.; Jia, Z.; Han, Z. Characteristics of scramjet regenerative cooling with endothermic chemical reactions. Acta Astronaut. 2022, 195, 1–11. [Google Scholar] [CrossRef]
- Ward, T.A.; Ervin, J.S.; Zabarnick, S.; Shafer, L. Pressure Effects on Flowing Mildly-Cracked n-Decane. J. Propuls. Power 2005, 21, 344–355. [Google Scholar] [CrossRef]
- Li, Y.; Jin, B.; Zhang, X.; Liu, G. Pyrolysis and heat sink of an endothermic hydrocarbon fuel EHF-851. J. Anal. Appl. Pyrolysis 2021, 155, 105084. [Google Scholar] [CrossRef]
- Zhong, F.; Fan, X.; Yu, G.; Li, J.; Sung, C.J. Thermal Cracking and Heat Sink Capacity of Aviation Kerosene Under Supercritical Conditions. J. Thermophys. Heat Transf. 2011, 25, 450–456. [Google Scholar] [CrossRef]
- Fu, Y.; Huang, H.; Wen, J.; Xu, G.; Zhao, W. Experimental investigation on convective heat transfer of supercritical RP-3 in vertical miniature tubes with various diameters. Int. J. Heat Mass Transf. 2017, 112, 814–824. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Z.; Zhu, Q.; Li, X.; Wang, J. Performance of Pt/ZrO2–TiO2–Al2O3 and coke deposition during methylcyclohexane catalytic cracking. Fuel 2017, 200, 387–394. [Google Scholar] [CrossRef]
- Zheng, Q.; Xiao, Z.; Xu, J.; Pan, L.; Zhang, X.; Zou, J.J. Catalytic steam reforming and heat sink of high-energy-density fuels: Correlation of reaction behaviors with molecular structures. Fuel 2021, 286, 119371. [Google Scholar] [CrossRef]
- Linstrom, P.; Mallard, W.G. NIST Chemistry WebBook, NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2023.
Fuel Type | (J/kg) |
---|---|
HED hydrocarbons | |
Methane | |
Hydrogen |
Research | Fuel Type | (MJ/kg) | (J/kg/K) | Molecular Formula | ||
---|---|---|---|---|---|---|
Yu | n-Decane | 47.74 | 0.067 | 3905 | 1.04 | |
Li | EHF-851 | 42.81 | 0.067 1 | 3994 | 1.07 | |
Zhong | RP-3 | 42.85 | 0.067 | 4463 | 1.10 | |
Liu | MCH | 46.57 | 0.069 | 3597 | 1.07 | |
Zheng | exo-THD 2 | 26.96 | 0.155 | 3010 | 1.20 | N/A |
Fuel Type | (kJ/s) | (K) | (s) | (m/s) | (s) | (m/s) | |
---|---|---|---|---|---|---|---|
n-Decane | 458.21 | 1.17 | 2258.94 | 1493.44 | 977.32 | 1439.14 | 941.79 |
EHF-851 | 757.55 | 1.33 | 2126.49 | 1448.74 | 965.88 | N/A | N/A |
RP-3 | 1121.95 | 1.54 | 2119.90 | 1521.71 | 1005.46 | 1398.60 | 924.12 |
MCH | 682.25 | 1.30 | 2267.54 | 1514.80 | 1009.92 | 1413.48 | 942.36 |
Parameters | |||||
---|---|---|---|---|---|
± 5% | 0.00% | 0.09% | −0.003% | 0.02% | 0.02% |
± 5% | 0.00% | 0.00% | 0.00% | 1.43% | 1.43% |
± 5% | 0.00% | 0.00% | 0.00% | 1.43% | 1.43% |
± 5% | 0.00% | 0.23% | −0.003% | 0.06% | 0.06% |
± 5% | 0.00% | 4.87% | 0.11% | 1.41% | 1.41% |
± 5% | 6.25% | 2.71% | 0.12% | 0.84% | 0.84% |
± 5% | 0.00% | 0.00% | 0.42% | 0.34% | 0.34% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Kang, Z.; Sun, W.; Wang, Y.; Zhang, J.; Bao, W. Feasibility and Performance Analysis of High-Energy-Density Hydrocarbon-Fueled Turboexpander Engine. Aerospace 2023, 10, 753. https://doi.org/10.3390/aerospace10090753
Gao J, Kang Z, Sun W, Wang Y, Zhang J, Bao W. Feasibility and Performance Analysis of High-Energy-Density Hydrocarbon-Fueled Turboexpander Engine. Aerospace. 2023; 10(9):753. https://doi.org/10.3390/aerospace10090753
Chicago/Turabian StyleGao, Jin, Ziyi Kang, Weiheng Sun, Youyin Wang, Junlong Zhang, and Wen Bao. 2023. "Feasibility and Performance Analysis of High-Energy-Density Hydrocarbon-Fueled Turboexpander Engine" Aerospace 10, no. 9: 753. https://doi.org/10.3390/aerospace10090753
APA StyleGao, J., Kang, Z., Sun, W., Wang, Y., Zhang, J., & Bao, W. (2023). Feasibility and Performance Analysis of High-Energy-Density Hydrocarbon-Fueled Turboexpander Engine. Aerospace, 10(9), 753. https://doi.org/10.3390/aerospace10090753