Investigation of Harmonic Response in Non-Premixed Swirling Combustion to Low-Frequency Acoustic Excitations
Abstract
:1. Introduction
2. Experimental Setup
3. Numerical Approach
3.1. LES Model
3.2. Computational Domain
3.3. Numerical Setup Details
3.4. Description of Monitoring Points
3.5. Validation
4. Proper Orthogonal Decomposition (POD) Method
5. Results and Discussion
5.1. Flame Response
5.2. Flow Dynamics
5.2.1. Spatial Response Characteristics
5.2.2. Axial Velocity Spectra in the Shear Layer
5.2.3. Vortex Motion Characteristics
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schadow, K.; Gutmark, E. Combustion instability related to vortex shedding in dump combustors and their passive control. Prog. Energy Combust. Sci. 1992, 18, 117–132. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, D.; Zhu, X. Generation and Mitigation mechanism studies of nonlinear thermoacoustic instability in a modelled swirling combustor with a heat exchanger. Aerospace 2021, 8, 60. [Google Scholar] [CrossRef]
- Rogers, D.E.; Marble, F.E. A mechanism for high-frequency oscillation in ramjet combustors and afterburners. J. Jet Propuls. 1956, 26, 456–462. [Google Scholar] [CrossRef]
- Keller, J.O.; Daily, J. The effects of highly exothermic chemical reaction on a two-dimensional mixing layer. AIAA J. 1985, 23, 1937–1945. [Google Scholar] [CrossRef]
- Syred, N. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. Sci. 2006, 32, 93–161. [Google Scholar] [CrossRef]
- Palies, P.; Durox, D.; Schuller, T.; Candel, S. The combined dynamics of swirler and turbulent premixed swirling flames. Combust. Flame 2010, 157, 1698–1717. [Google Scholar] [CrossRef]
- Sujith, R. An experimental investigation of jets in a strong acoustic field. In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003; p. 1276. [Google Scholar]
- Karimi, N.; Brear, M.J.; Jin, S.-H.; Monty, J.P. Linear and non-linear forced response of a conical, ducted, laminar premixed flame. Combust. Flame 2009, 156, 2201–2212. [Google Scholar] [CrossRef]
- Idahosa, U.; Saha, A.; Xu, C.; Basu, S. Non-premixed acoustically perturbed swirling flame dynamics. Combust. Flame 2010, 157, 1800–1814. [Google Scholar] [CrossRef]
- Pan, D.; Ji, C.; Zhu, T. Characterization of Nonlinear Responses of Non-Premixed Flames to Low-Frequency Acoustic Excitations. Appl. Sci. 2023, 13, 6237. [Google Scholar] [CrossRef]
- Palies, P.; Schuller, T.; Durox, D.; Gicquel, L.; Candel, S. Acoustically perturbed turbulent premixed swirling flames. Phys. Fluids 2011, 23, 037101. [Google Scholar] [CrossRef]
- Balachandran, R.; Ayoola, B.O.; Kaminski, C.F.; Dowling, A.P.; Mastorakos, E. Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame 2005, 143, 37–55. [Google Scholar] [CrossRef]
- Kim, K.T.; Hochgreb, S. The nonlinear heat release response of stratified lean-premixed flames to acoustic velocity oscillations. Combust. Flame 2011, 158, 2482–2499. [Google Scholar] [CrossRef]
- Liu, W.; Xue, R.; Zhang, L.; Yang, Q.; Wang, H. Nonlinear response of a premixed low-swirl flame to acoustic excitation with large amplitude. Combust. Flame 2022, 235, 111733. [Google Scholar] [CrossRef]
- Santhosh, R.; Miglani, A.; Basu, S. Transition and acoustic response of recirculation structures in an unconfined co-axial isothermal swirling flow. Phys. Fluids 2013, 25, 083603. [Google Scholar] [CrossRef]
- Wang, G.; Liu, X.; Xia, X.; Wang, S.; Qi, F. Dynamics of periodically-excited vortices in swirling flames. Proc. Combust. Inst. 2021, 38, 6183–6191. [Google Scholar] [CrossRef]
- Ahn, B.; Lee, J.; Jung, S.; Kim, K.T. Low-frequency combustion instabilities of an airblast swirl injector in a liquid-fuel combustor. Combust. Flame 2018, 196, 424–438. [Google Scholar] [CrossRef]
- Fu, X.; Yang, F.; Guo, Z. Combustion instability of pilot flame in a pilot bluff body stabilized combustor. Chin. J. Aeronaut. 2015, 28, 1606–1615. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y. Fuel mixing effect on the flickering of jet diffusion flames. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2011, 225, 155–162. [Google Scholar] [CrossRef]
- Darabkhani, H.G.; Zhang, Y. Methane diffusion flame dynamics at elevated pressures. Combust. Sci. Technol. 2010, 182, 231–251. [Google Scholar] [CrossRef]
- Magina, N.; Shin, D.-H.; Acharya, V.; Lieuwen, T. Response of non-premixed flames to bulk flow perturbations. Proc. Combust. Inst. 2013, 34, 963–971. [Google Scholar] [CrossRef]
- Magina, N.; Acharya, V.; Lieuwen, T. Forced response of laminar non-premixed jet flames. Prog. Energy Combust. Sci. 2019, 70, 89–118. [Google Scholar] [CrossRef]
- Chung, J.; Blaser, D. Transfer function method of measuring in-duct acoustic properties. I. Theory. J. Acoust. Soc. Am. 1980, 68, 907–913. [Google Scholar] [CrossRef]
- Nicoud, F.; Ducros, F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 1999, 62, 183–200. [Google Scholar] [CrossRef]
- Georgiadis, N.J.; Rizzetta, D.P.; Fureby, C. Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research. AIAA J. 2010, 48, 1772–1784. [Google Scholar] [CrossRef]
- De Santis, A.; Clements, A.G.; Pranzitelli, A.; Ingham, D.B.; Pourkashanian, M. Assessment of the impact of subgrid-scale stress models and mesh resolution on the LES of a partially-premixed swirling flame. Fuel 2020, 281, 118620. [Google Scholar] [CrossRef]
- Celik, I.B.; Cehreli, Z.N.; Yavuz, I. Index of resolution quality for large eddy simulations. J. Fluids Eng.-Trans. Asme 2005, 127, 949–958. [Google Scholar] [CrossRef]
- Mattsson, R.; Kupiainen, M.; Gren, P.; Wahlin, A.; Carlsson, T.E.; Fureby, C. Pulsed TV holography and schlieren studies, and large eddy simulations of a turbulent jet diffusion flame. Combust. Flame 2004, 139, 1–15. [Google Scholar] [CrossRef]
- Sui, J.; Zhao, D.; Zhang, B.; Gao, N. Experimental study of Rijke-type thermoacoustic instability by using proper orthogonal decomposition method. Exp. Therm. Fluid Sci. 2017, 81, 336–344. [Google Scholar] [CrossRef]
- Song, X.; Zhu, T.; Pan, D.; Wang, Z.; Ji, C.; Zhao, D. Numerical investigations on the beating behavior of self-excited combustion instability in a hydrogen-fueled Rijke type combustor. Aerosp. Sci. Technol. 2022, 126, 107624. [Google Scholar] [CrossRef]
- Liang, Y.; Lee, H.; Lim, S.; Lin, W.; Lee, K.; Wu, C. Proper orthogonal decomposition and its applications—Part I: Theory. J. Sound Vib. 2002, 252, 527–544. [Google Scholar] [CrossRef]
- Kim, D.; Lee, J.G.; Quay, B.D.; Santavicca, D.A.; Kim, K.; Srinivasan, S. Effect of Flame Structure on the Flame Transfer Function in a Premixed Gas Turbine Combustor. J. Eng. Gas Turbines Power 2009, 132, 021502. [Google Scholar] [CrossRef]
- Ranalli, J.A.; Ferguson, D.; Martin, C. Simple analysis of flame dynamics via flexible convected disturbance models. J. Propuls. Power 2012, 28, 1268–1276. [Google Scholar] [CrossRef]
- Chen, H.; Reuss, D.L.; Sick, V. On the use and interpretation of proper orthogonal decomposition of in-cylinder engine flows. Meas. Sci. Technol. 2012, 23, 085302. [Google Scholar] [CrossRef]
- Schimek, S.; Moeck, J.P.; Paschereit, C.O. An Experimental Investigation of the Nonlinear Response of an Atmospheric Swirl-Stabilized Premixed Flame. J. Eng. Gas Turbines Power-Trans. Asme 2011, 133, 101502. [Google Scholar] [CrossRef]
- Turns, S.R. An Introduction to Combustion: Concepts and Applications. 2000. Available online: https://old.amu.ac.in/emp/studym/100007211.pdf (accessed on 10 August 2023).
- Jeong, J.; Hussain, F. On the identification of a vortex. J. Fluid Mech. 1995, 285, 69–94. [Google Scholar] [CrossRef]
- Jiang, J.; Jing, L.; Zhu, M.; Jiang, X. A comparative study of instabilities in forced reacting plumes of nonpremixed flames. J. Energy Inst. 2016, 89, 456–467. [Google Scholar] [CrossRef]
- Kim, T.; Ahn, M.; Lim, D.; Yoon, Y. Flame describing function and combustion instability analysis of non-premixed coaxial jet flames. Exp. Therm. Fluid Sci. 2022, 136, 110642. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, D.; Ni, S.; David, T.; Zhang, Y. Entropy and flame transfer function analysis of a hydrogen-fueled diffusion flame in a longitudinal combustor. Energy 2020, 194, 116870. [Google Scholar] [CrossRef]
- Aydemir, E.; Worth, N.A.; Dawson, J.R. The formation of vortex rings in a strongly forced round jet. Exp. Fluids 2012, 52, 729–742. [Google Scholar] [CrossRef]
- Gharib, M.; Rambod, E.; Shariff, K. A universal time scale for vortex ring formation. J. Fluid Mech. 1998, 360, 121–140. [Google Scholar] [CrossRef]
- Buntine, J.D.; Pullin, D.I. Merger and cancellation of strained vortices. J. Fluid Mech. 1989, 205, 263–295. [Google Scholar] [CrossRef]
- Zhang, J.; Ratner, A. Effect of pressure variation on acoustically perturbed swirling flames. Proc. Combust. Inst. 2017, 36, 3881–3888. [Google Scholar] [CrossRef]
- Huang, Y.; Ratner, A. Experimental Investigation of Thermoacoustic Coupling for Low-Swirl Lean Premixed Flames. J. Propuls. Power 2009, 25, 365–373. [Google Scholar] [CrossRef]
- Shin, D.-H.; Lieuwen, T. Flame wrinkle destruction processes in harmonically forced, turbulent premixed flames. J. Fluid Mech. 2013, 721, 484–513. [Google Scholar] [CrossRef]
- Ranalli, J.; Ferguson, D. Measurement of Flame Frequency Response Functions Under Exhaust Gas Recirculation Conditions. J. Eng. Gas Turbines Power-Trans. Asme 2012, 134, 091502. [Google Scholar] [CrossRef]
Point | X/mm | Y/mm | Z/mm |
---|---|---|---|
A | −14.5 | 0 | 0 |
B1 | −20.5 | 0 | 5 |
B2 | −25.5 | 0 | 15 |
B3 | −32.5 | 0 | 25 |
C1 | −12.5 | 0 | 5 |
C2 | −18 | 0 | 15 |
C3 | −24.5 | 0 | 25 |
D | −19 | 0 | 0.5 |
E | −10 | 0 | 0.5 |
fexcited (Hz) | fresponse (Hz) | Normalized Amplitude (×100%) | |||||
---|---|---|---|---|---|---|---|
B1 | B2 | B3 | C1 | C2 | C3 | ||
20 | 10 | 1.74 | 6.41 | 13.77 | 14.03 | 11.61 | 12.86 |
20 | 100.00 | 110.69 | 36.64 | 109.69 | 90.75 | 75.13 | |
40 | 30.36 | 46.45 | 18.18 | 29.27 | 15.30 | 43.76 | |
60 | 5.90 | 12.21 | 17.29 | 21.25 | 6.24 | 42.13 | |
80 | 13.08 | 20.56 | 9.31 | 53.53 | 21.14 | 4.15 | |
100 | 10.44 | 16.28 | 2.31 | 41.53 | 13.81 | 8.27 | |
120 | 7.36 | 3.65 | 0.64 | 15.26 | 10.29 | 5.50 | |
50 | 25 | 4.76 | 2.55 | 9.50 | 13.57 | 7.46 | 12.68 |
50 | 100.00 | 33.41 | 42.48 | 70.78 | 48.19 | 33.31 | |
100 | 19.02 | 28.13 | 5.21 | 8.48 | 21.91 | 1.38 | |
150 | 75 | 6.56 | 7.78 | 3.65 | 4.06 | 16.91 | 25.19 |
150 | 100.00 | 55.21 | 28.03 | 73.59 | 42.96 | 25.50 | |
300 | 21.19 | 1.53 | 0.37 | 1.83 | 0.64 | 0.86 |
fexcited (Hz) | 20 | 50 | 150 |
λ (mm) | 40.163 | 15.656 | 3.309 |
t (s) | 0.050 | 0.020 | 0.007 |
Ue (m/s) | 0.803 | 0.783 | 0.496 |
Ue/Uj | 0.726 | 0.708 | 0.449 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, J.; Ji, C.; Pan, D.; Zong, C.; Zhang, Z.; Zhu, T. Investigation of Harmonic Response in Non-Premixed Swirling Combustion to Low-Frequency Acoustic Excitations. Aerospace 2023, 10, 812. https://doi.org/10.3390/aerospace10090812
Bao J, Ji C, Pan D, Zong C, Zhang Z, Zhu T. Investigation of Harmonic Response in Non-Premixed Swirling Combustion to Low-Frequency Acoustic Excitations. Aerospace. 2023; 10(9):812. https://doi.org/10.3390/aerospace10090812
Chicago/Turabian StyleBao, Jinrong, Chenzhen Ji, Deng Pan, Chao Zong, Ziyang Zhang, and Tong Zhu. 2023. "Investigation of Harmonic Response in Non-Premixed Swirling Combustion to Low-Frequency Acoustic Excitations" Aerospace 10, no. 9: 812. https://doi.org/10.3390/aerospace10090812
APA StyleBao, J., Ji, C., Pan, D., Zong, C., Zhang, Z., & Zhu, T. (2023). Investigation of Harmonic Response in Non-Premixed Swirling Combustion to Low-Frequency Acoustic Excitations. Aerospace, 10(9), 812. https://doi.org/10.3390/aerospace10090812