Mission-Driven Inverse Design of Blended Wing Body Aircraft with Machine Learning
Abstract
:1. Introduction
2. Computational Approach and Methodology
2.1. Design Space Creation
2.1.1. Geometry Parameterization
2.1.2. Database Creation
2.2. Neural Network Architecture Generation, Numerical Method Selection, and Training
2.3. K-Fold Cross-Validation Training and Testing Scheme
2.4. Random Forest Approach for Extensibility Analysis
3. Inverse-Design Prediction Results
3.1. Performance of Neural Networks
3.2. Extensibility Analysis via Random Forest
3.3. Envisioned Usage in Design Space Exploration
4. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
b | = | wingspan |
S | = | wing area |
= | aspect ratio | |
= | wing loading | |
= | thrust-to-weight ratio | |
= | lift coefficient | |
= | drag coefficient | |
= | pitching moment coefficient | |
= | pressure coefficient | |
= | angle of attack | |
= | lift-to-drag ratio | |
= | tail volume coefficient | |
= | wingspan distribution | |
= | wing area distribution | |
= | root chord length distribution | |
= | wingspan distribution for BWB450 | |
= | wing area distribution for BWB450 | |
= | quarter chord sweep distribution for BWB450 | |
= | root chord length | |
= | aerodynamic center | |
= | root chord fraction | |
= | wingspan fraction | |
= | position of engine in terms of root chord fraction | |
= | position of engine in terms of wingspan fraction | |
= | adjusted wingspan distribution | |
= | adjusted wing area distribution | |
= | total static thrust available | |
= | 2nd-segment optimized total static thrust available | |
= | coefficient of determination | |
= | compressibility effects drag coefficient | |
= | induced drag coefficient | |
= | miscellaneous drag coefficient | |
= | parasitic drag coefficient | |
W | = | weight |
= | thrust required | |
= | specific fuel consumption | |
= | time-domain airplane performance vectors | |
= | configuration design data matrix | |
= | airplane performance matrix | |
= | max reference quantitites used for scaling | |
= | scaled configuration design data matrix | |
= | scaled airplane performance matrix | |
= | Latin-ypercube sample size | |
= | net input into the first node of the first hidden layer | |
= | first hidden layer | |
= | number of neurons in the hidden layer of a shallow neural network | |
= | weight values for input-to-hidden layer nodal connections | |
= | bias value of the hidden layer | |
= | output from the ith neuron in the hidden layer | |
= | weight values for hidden-to-output layer nodal connections | |
= | bias value of the output layer | |
= | approach speed |
References
- Dorsey, A.; Uranga, A. Design Space Exploration of Blended Wing Bodies. In Proceedings of the AIAA AVIATION 2021 Forum, Virtual Event, 2–6 August 2021. [Google Scholar] [CrossRef]
- Raymer, D.P. Aircraft Design: A Conceptual Approach. In AIAA Education Series, AIAA; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 1992. [Google Scholar] [CrossRef]
- Strathoff, P.; Zumegen, C.; Stumpf, E.; Klumpp, C.; Jeschke, P.; Warner, K.L.; Gelleschus, R.; Bocklisch, T.; Portner, B.; Moser, L.; et al. On the Design and Sustainability of Commuter Aircraft with Electrified Propulsion Systems. In Proceedings of the AIAA AVIATION 2022 Forum, Chicago, IL, USA, 27 June–1 July 2022. [Google Scholar] [CrossRef]
- Wakayama, S.; Kroo, I. The challenge and promise of blended-wing-body optimization. In Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, USA, 2–4 September 1998. [Google Scholar] [CrossRef]
- Cinar, G.; Cai, Y.; Bendarkar, M.V.; Burrell, A.I.; Denney, R.K.; Mavris, D.N. System Analysis and Design Space Exploration of Regional Aircraft with Electrified Powertrains. J. Aircr. 2022, 60, 1–28. [Google Scholar] [CrossRef]
- Biser, S.; Filipenko, M.; Boll, M.; Kastner, N. Design Space Exploration Study and Optimization of a Distributed Turbo-Electric Propulsion System for a Regional Passenger Aircraft. In Proceedings of the AIAA Propulsion and Energy 2020 Forum, Virtual Event, 24–28 August 2020. [Google Scholar] [CrossRef]
- Kallou, E.; Sarojini, D.; Mavris, D.N. Application of Set-Based Design Principles on Multi-Level Aircraft Design Space Exploration. In Proceedings of the AIAA AVIATION 2022 Forum, Chicago, IL, USA, 27 June–1 July 2022. [Google Scholar] [CrossRef]
- Wang, J.; Wu, J.; Ling, J.; Iaccarino, G.; Xiao, H. Physics-Informed Machine Learning for Predictive Turbulence Modeling: Towards a Complete Framework; Sandia National Lab.: Albuquerque, NM, USA, 2016. [CrossRef]
- Sharma, R.S.; Hosder, S. Investigation of Mission-Driven Inverse Aircraft Design Space Exploration with Machine Learning. J. Aerosp. Inf. Syst. 2021, 18, 774–789. [Google Scholar] [CrossRef]
- Sun, G.; Sun, Y.; Wang, S. Artificial neural network based inverse design: Airfoils and wings. Aerosp. Sci. Technol. 2015, 42, 415–428. [Google Scholar] [CrossRef]
- Gibbs, J.; Gollnick, V. Inverse Aircraft Design. In Proceedings of the AIAA AVIATION 2020 FORUM, Virtual, 15–19 June 2020. [Google Scholar] [CrossRef]
- Sekar, V.; Zhang, M.; Shu, C.; Khoo, B.C. Inverse Design of Airfoil Using a Deep Convolutional Neural Network. AIAA J. 2019, 57, 993–1003. [Google Scholar] [CrossRef]
- Rai, M.M.; Madavan, N.K. Aerodynamic Design Using Neural Networks. AIAA J. 2000, 38, 173–182. [Google Scholar] [CrossRef]
- Barrett, T.R.; Bressloff, N.W.; Keane, A.J. Airfoil Shape Design and Optimization Using Multifidelity Analysis and Embedded Inverse Design. AIAA J. 2006, 44, 2051–2060. [Google Scholar] [CrossRef]
- Kharal, A.; Saleem, A. Neural networks based airfoil generation for a given Cp using Bezier–PARSEC parameterization. Aerosp. Sci. Technol. 2012, 23, 330–344. [Google Scholar] [CrossRef]
- Yilmaz, E.; German, B. A Deep Learning Approach to an Airfoil Inverse Design Problem. In Proceedings of the 2018 Multidisciplinary Analysis and Optimization Conference, Atlanta, GA, USA, 25–29 June 2018. [Google Scholar] [CrossRef]
- Glaws, A.; King, R.N.; Vijayakumar, G.; Ananthan, S. Invertible Neural Networks for Airfoil Design. AIAA J. 2022, 60, 3035–3047. [Google Scholar] [CrossRef]
- Yu, K.; Chen, C.; Chen, Y. Inverse Design of Nozzle Using Convolutional Neural Network. J. Spacecr. Rocket. 2022, 59, 1161–1170. [Google Scholar] [CrossRef]
- Oddiraju, M.; Behjat, A.; Nouh, M.; Chowdhury, S. Efficient Inverse Design of 2D Elastic Metamaterial Systems using Invertible Neural Networks. In Proceedings of the AIAA AVIATION 2021 FORUM, Virtual Event, 2–6 August 2021. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M. Data-based approach for wing shape design optimization. Aerosp. Sci. Technol. 2021, 112, 106639. [Google Scholar] [CrossRef]
- Thuerey, N.; Weißenow, K.; Prantl, L.; Hu, X. Deep Learning Methods for Reynolds-Averaged Navier–Stokes Simulations of Airfoil Flows. AIAA J. 2020, 58, 25–36. [Google Scholar] [CrossRef]
- Singh, A.P.; Medida, S.; Duraisamy, K. Machine-Learning-Augmented Predictive Modeling of Turbulent Separated Flows over Airfoils. AIAA J. 2017, 55, 2215–2227. [Google Scholar] [CrossRef]
- Li, J.; Du, X.; Martins, J. Machine learning in aerodynamic shape optimization. Prog. Aerosp. Sci. 2022, 134, 100849. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M. Adjoint-Free Aerodynamic Shape Optimization of the Common Research Model Wing. AIAA J. 2021, 59, 1990–2000. [Google Scholar] [CrossRef]
- Bouhlel, M.; He, S.; Martins, J. Calable gradient-enhanced artificial neural networks for airfoil shape design in the subsonic and transonic regime. Struct. Multidiscip. Optim. 2020, 61, 1363–1376. [Google Scholar] [CrossRef]
- Du, X.; He, P.; Martins, J. A B-spline-based generative adversarial network model for fast interactive airfoil aerodynamic optimization. In Proceedings of the AIAA SciTech Forum, AIAA, Orlando, FL, USA, 6–10 January 2020. [Google Scholar] [CrossRef]
- Barnhart, S.; Narayanan, B.; Gunasekaran, S. Blown wing aerodynamic coefficient predictions using traditional machine learning and data science approaches. In Proceedings of the AIAA SciTech Forum, Online, 11–15 January 2021. [Google Scholar] [CrossRef]
- Karali, H.; Inalhan, G.; Demirezen, M.U.; Yukselen, M.A. A new nonlinear lifting line method for aerodynamic analysis and deep learning modeling of small unmanned aerial vehicles. Int. J. Micro Air Veh. 2021, 13, 1–24. [Google Scholar] [CrossRef]
- Cai, S.; Wang, Z.; Fuest, F.; Jeon, Y.; Gray, C.; Karniadakis, G.E. Flow over an espresso cup: Inferring 3-d velocity and pressure fields from tomographic background oriented schlieren via physics-informed neural networks. J. Fluid Mech. 2021, 915, A102. [Google Scholar] [CrossRef]
- Yilmaz, E.; German, B. Conditional generative adversarial network framework for airfoil inverse design. In Proceedings of the AIAA AVIATION Forum, Online, 15–19 June 2020. [Google Scholar] [CrossRef]
- Achour, G.; Sung, W.J.; Pinon-Fischer, O.; Mavris, D. Development of a conditional generative adversarial network for airfoil shape optimization. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar] [CrossRef]
- Secco, N.; de Mattos, B. Artificial neural networks to predict aerodynamic coefficients of transport airplanes. Aerosp. Sci. Technol. 2017, 89, 211–230. [Google Scholar] [CrossRef]
- Lukaczyk, T.W.; Wendorff, A.D.; Colonno, M.; Economon, T.D.; Alonso, J.J.; Orra, T.H.; Ilario, C. SUAVE: An Open-Source Environment for Multi-Fidelity Conceptual Vehicle Design. In Proceedings of the 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Dallas, TX, USA, 22–26 June 2015. [Google Scholar] [CrossRef]
- Botero, E.M.; Wendorff, A.; MacDonald, T.; Variyar, A.; Vegh, J.M.; Lukaczyk, T.W.; Alonso, J.J.; Orra, T.H.; Ilario, C. SUAVE: An Open-Source Environment for Conceptual Vehicle Design and Optimization. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar] [CrossRef]
- MacDonald, T.; Botero, E.; Vegh, J.M.; Variyar, A.; Alonso, J.J.; Orra, T.H.; Ilario, C. SUAVE: An Open-Source Environment Enabling Unconventional Vehicle Designs through Higher Fidelity. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar] [CrossRef]
- MacDonald, T.; Clarke, M.; Botero, E.M.; Vegh, J.M.; Alonso, J.J. SUAVE: An Open-Source Environment Enabling Multi-Fidelity Vehicle Optimization. In Proceedings of the 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Denver, CO, USA, 5–9 June 2017. [Google Scholar] [CrossRef]
- Tanio, T.; Takeda, K.; Yu, J.; Hashimoto, M. Training Data Reduction using Support Vectors for Neural Networks. In Proceedings of the 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Lanzhou, China, 18–21 November 2019. [Google Scholar] [CrossRef]
- Lyu, Z.; Martins, J.R.R.A. Aerodynamic Design Optimization Studies of a Blended-Wing-Body Aircraft. J. Aircr. 2014, 51, 1604–1617. [Google Scholar] [CrossRef]
- Liebeck, R.H. Design of the Blended Wing Body Subsonic Transport. J. Aircr. 2004, 41, 10–25. [Google Scholar] [CrossRef]
- Brown, M.; Vos, R. Conceptual Design and Evaluation of Blended-Wing Body Aircraft. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar] [CrossRef]
- Nickol, C.; Haller, W. Assessment of the Performance Potential of Advanced Subsonic Transport Concepts for NASA’s Environmentally Responsible Aviation Project. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar] [CrossRef]
- Hileman, J.; Spakovszky, Z.; Drela, M.; Sargeant, M.; Jones, A. Airframe Design for Silent Fuel-Efficient Aircraft. AIAA J. Aircr. 2010, 47, 956–969. [Google Scholar] [CrossRef]
- Bonet, J.; Schellenger, H.; Rawdon, B.; Elmer, K.; Wakayama, S.; Brown, D. Environmentally Responsible Aviation (ERA) Project—N + 2 Advanced Vehicle Concepts Study and Conceptual Design of Subscale Test Vehicle (STV) Final Report; Report No.: NASA/CR-2011-216519; NASA Dryden Flight Research Center: Edwards, CA, USA, 2011.
- Maier, R. ACFA 2020—An FP7 project on active control of flexible fuel efficient aircraft configurations. Prog. Flight Dyn. Guid. Navig. Control. Fault Detect. Avion. 2013, 6, 585–600. [Google Scholar] [CrossRef]
- Smith, H. College of Aeronautics Blended Wing Body Development Programme, ICAS-2000-1.1.4. In Proceedings of the 22nd International Congress of the Aeronautical Sciences, Harrogate, UK, 27 August–1 September 2000. [Google Scholar]
- Bolsunovsky, A.; Buzoverya, N.; Gurevich, B.; Denisov, V.; Dunaevsky, A.; Shkadov, L. Flying wing—Problems and Decisions. AIAA J. Aircr. Des. 2001, 4, 193–210. [Google Scholar] [CrossRef]
- Godard, J. Semi-Buried Engine Installation: The Nacre Project Experience, ICAS-2010-4.4.3. In Proceedings of the 27th International Congress of the Aeronautical Sciences, Nice, France, 19–24 September 2010. [Google Scholar]
- Frota, J.; Nicholls, K.; Whurr, J.; Müller, M.; Gall, P.E.; Loerke, J.; Macgregor, K.; Schmollgruber, P.; Russell, J.; Hepperle, M.; et al. Final Activity Report. New Aircraft Concept Research (NACRE); Technical Report; SIXTH FRAMEWORK PROGRAMME PRIORITY 4, Aeronautics and Space, FP6-2003-AERO-1; NACRE Consortium: Blagnac, France, 2010. [Google Scholar]
- Hepperle, M. The VELA Project. 2005. Available online: https://www.dlr.de/as/en/Portaldata/5/Resources/dokumente/projekte/vela/The_VELA_Project.pdf (accessed on 27 November 2023).
- Fusaro, R.; Viola, N. Influence of High Level Requirements in Aircraft Design: From scratch to sketch. In Proceedings of the 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, GA, USA, 25–29 June 2018. [Google Scholar] [CrossRef]
- Chrisman, L. Latin Hypercube vs. Monte Carlo Sampling. March 2020. Available online: https://lumina.com/latin-hypercube-vs-monte-carlo-sampling/ (accessed on 4 January 2024).
- Aistleitner, C.; Hofer, M.; Tichy, R. A Central Limit Theorem for Latin Hypercube Sampling with Dependence and Application to Exotic Basket Option Pricing. Int. J. Theor. Appl. Financ. 2012, 15, 1250046. [Google Scholar] [CrossRef]
- Loh, W.L. On Latin Hypercube Sampling. Ann. Stat. 1996, 24, 2058–2080. [Google Scholar] [CrossRef]
- Raymer, D.P. RDSwin: Seamlessly-Integrated Aircraft Conceptual Design for Students & Professionals. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar] [CrossRef]
- Beard, J.E.; Takahashi, T.T. Revisiting Takeoff Obstacle Clearance Procedures: An Argument for Extended Second Segment Climb. In Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference, Denver, CO, USA, 5–9 June 2017. [Google Scholar] [CrossRef]
- Stöttner, T. Why Data Should Be Normalized before Training a Neural Network. May 2019. Available online: https://towardsdatascience.com/why-data-should-be-normalized-before-training-a-neural-network-c626b7f66c7d (accessed on 20 January 2023).
- Nayak, S.; Misra, B.; Behera, H. Impact of Data Normalization on Stock Index Forecasting. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 2014, 6, 357–369. [Google Scholar]
- Kim, D.E.; Gofman, M. Comparison of shallow and deep neural networks for network intrusion detection. In Proceedings of the 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 8–10 January 2018; pp. 204–208. [Google Scholar] [CrossRef]
- Deng, L.; Li, X. Machine Learning Paradigms for Speech Recognition: An Overview. IEEE Trans. Audio Speech Lang. Process. 2013, 21, 1060–1089. [Google Scholar] [CrossRef]
- Lin, C.W.; Wang, J.S. A digital circuit design of hyperbolic tangent sigmoid function for neural networks. In Proceedings of the 2008 IEEE International Symposium on Circuits and Systems, Seattle, WA, USA, 18–21 May 2008; pp. 856–859. [Google Scholar] [CrossRef]
- Nicholson, C. A Beginner’s Guide to Neural Networks and Deep Learning. Available online: https://wiki.pathmind.com/neural-network (accessed on 23 November 2020).
- Gill, P.R.; Murray, W.; Wright, M.H. The Levenburg-Marquardt Method. In Practical Optimization; Emerald Group Publishing Limited: Bingley, UK, 1981; Volume 4, pp. 136–137. [Google Scholar]
- Aburaed, N.; Atalla, S.; Mukhtar, H.; Al-Saad, M.; Mansoor, W. Scaled Conjugate Gradient Neural Network for Optimizing Indoor Positioning System. In Proceedings of the 2019 International Symposium on Networks, Computers and Communications (ISNCC), Istanbul, Turkey, 18–20 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Kumar, U.A. Comparison of neural networks and regression analysis: A new insight. Expert Syst. Appl. 2005, 29, 424–430. [Google Scholar] [CrossRef]
- Papila, N.; Shyy, W.; Fitz-Coy, N.; Haftka, R. Assessment of neural net and polynomial-based techniques for aerodynamic applications. In Proceedings of the AIAA 17th Applied Aerodynamics Conference, Norfolk, VA, USA, 28 June–1 July 1999. [Google Scholar] [CrossRef]
- Campagnini, S.; Liuzzi, P.; Galeri, S.; Montesano, A.; Diverio, M.; Cecchi, F.; Falsini, C.; Langone, E.; Mosca, R.; Germanotta, M.; et al. Cross-Validation of Machine Learning Models for the Functional Outcome Prediction after Post-Stroke Robot-Assisted Rehabilitation. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 4950–4953. [Google Scholar] [CrossRef]
- Powers, D.M.W.; Atyabi, A. The Problem of Cross-Validation: Averaging and Bias, Repetition and Significance. In Proceedings of the 2012 Spring Congress on Engineering and Technology, Xi’an, China, 27–30 May 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Yadav, S.; Shukla, S. Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification. In Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28 February 2016; pp. 78–83. [Google Scholar] [CrossRef]
- Alippi, C.; Roveri, M. Virtual k-fold cross validation: An effective method for accuracy assessment. In Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–6. [Google Scholar] [CrossRef]
- More, A.S.; Rana, D.P. Review of random forest classification techniques to resolve data imbalance. In Proceedings of the 2017 1st International Conference on Intelligent Systems and Information Management (ICISIM), Aurangabad, India, 5–6 October 2017; pp. 72–78. [Google Scholar] [CrossRef]
- Kam Ho, T. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282. [Google Scholar] [CrossRef]
- Yang, M.; Xie, B.; Dou, Y.; Xue, G. Cascade Forward Artificial Neural Network based Behavioral Predicting Approach for the Integrated Satellite-terrestrial Networks. Mob. Netw. Appl. 2022, 27, 1569–1577. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Jiang, Y. Overfitting and Underfitting Analysis for Deep Learning Based End-to-end Communication Systems. In Proceedings of the 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an, China, 23–25 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
Vehicle | [lbs] | Span [ft] | Total Thrust [lbs] | |
---|---|---|---|---|
N + 3 SUGAR-Ray | 181,500 | 4136 | 168.5 | 56,000 |
HWB216-GTF | 312,500 | 8221 | 220 | 92,000 |
SAX40 | 330,300 | 8998 | 221.6 | 92,500 |
ERA-0009A | 411,250 | 8048 | 229.3 | 95,000 |
HWB301-GTF | 533,000 | 10,169 | 250 | 134,500 |
HWB400-GTF | 701,000 | 11,471 | 260 | 168,500 |
ACFA-2020 | 884,000 | 14,291 | 261.9 | 239,000 |
BW-98 | 1,060,000 | 14,968 | 254.27 | 296,500 |
IWB-750 | 1,262,000 | 17,093 | 328.08 | 353,000 |
NACRE-750 | 1,390,000 | 21,453 | 328.08 | 468,500 |
VELA-3 | 1,542,000 | 22,088 | 326.76 | 432,500 |
Design Variable | Actual Value | FF Predicted Value | FF % Error | CF Predicted Value | CF % Error |
---|---|---|---|---|---|
N + 3 SUGAR-Ray [41] | |||||
b, ft. | 168.5 | 168.5 | 0.004 | 167.9 | 3.61 |
S, | 4136 | 4139.5 | 0.084 | 3991.7 | 3.49 |
, lbs. | 181,500 | 181,446 | 0.03 | 187,580 | 3.35 |
, lbs. | 56,000 | 55,980 | 0.03 | 57,719 | 3.07 |
HWB216-GTF [42] | |||||
b, ft. | 220 | 220.01 | 0.007 | 218.7 | 0.61 |
S, | 8221 | 8221.2 | 0.002 | 8193.9 | 0.33 |
, lbs. | 312,500 | 314,094 | 0.51 | 320,000 | 2.40 |
, lbs. | 92,000 | 92,005 | 0.005 | 95,404 | 0.37 |
SAX40 [43] | |||||
b, ft. | 221.6 | 221.6 | 0.004 | 220.4 | 0.54 |
S, | 8997.6 | 8997.03 | 0.006 | 8987.7 | 0.11 |
, lbs. | 330,300 | 330,283 | 0.005 | 338,788 | 2.57 |
, lbs. | 92,500 | 92,505 | 0.005 | 95,414 | 3.15 |
ERA-009A [44] | |||||
b, ft. | 229.3 | 229.25 | 0.02 | 228.2 | 0.47 |
S, | 8048.0 | 8047.9 | 2 | 8018.2 | 0.37 |
, lbs. | 411,250 | 411,003 | 0.06 | 424,862 | 3.31 |
, lbs. | 95,000 | 94,905 | 0.10 | 100,624 | 5.92 |
HWB301-GTF [42] | |||||
b, ft. | 250 | 250.0 | 0.01 | 248.5 | 0.59 |
S, | 10,169 | 10,168.8 | 0.002 | 10,182.1 | 0.13 |
, lbs. | 533,000 | 533,213 | 0.04 | 545,419 | 2.33 |
, lbs. | 134,500 | 134,729 | 0.17 | 137,432 | 2.18 |
HWB400-GTF [42] | |||||
b, ft. | 260 | 260.0 | 0.007 | 258.3 | 0.66 |
S, | 11,471 | 11,467.0 | 0.03 | 11,494.0 | 0.2 |
, lbs. | 701,000 | 701,561 | 0.08 | 713,197 | 1.74 |
, lbs. | 168,500 | 168,534 | 0.02 | 171,247 | 1.63 |
ACFA-2020 [45] | |||||
b, ft. | 261.9 | 261.9 | 1.6 | 260.7 | 0.45 |
S, | 14,290.6 | 14,296.4 | 0.04 | 14,299.2 | 0.06 |
, lbs. | 884,000 | 883,885 | 0.013 | 902,918 | 2.14 |
, lbs. | 239,000 | 238,785 | 0.09 | 248,775 | 4.09 |
BW-98 [46] | |||||
b, ft. | 254.3 | 254.4 | 0.06 | 258.6 | 1.7 |
S, | 14,968.2 | 14,991.7 | 0.16 | 15,200.8 | 1.55 |
, lbs. | 1,060,000 | 1,064,770 | 0.45 | 1,088,832 | 2.72 |
, lbs. | 296,500 | 297,449 | 0.32 | 301,274 | 1.61 |
IWB-750 [47] | |||||
b, ft. | 328.1 | 328.1 | 0.002 | 325.8 | 0.70 |
S, | 17,093.1 | 17,089.2 | 0.023 | 17,063.4 | 0.17 |
, lbs. | 1,262,000 | 1,264,145 | 0.17 | 1,262,038 | 0.003 |
, lbs. | 353,000 | 354,483 | 0.42 | 355,259 | 0.64 |
NACRE-750 [47] | |||||
b, ft. | 328.1 | 328.1 | 0.005 | 325.7 | 0.71 |
S, | 21,452.5 | 21,448.9 | 0.02 | 21,269.3 | 0.85 |
, lbs. | 1,390,000 | 1,393,892 | 0.28 | 1,393,336 | 0.24 |
, lbs. | 468,500 | 468,641 | 0.03 | 472,014 | 0.75 |
VELA-3 [49] | |||||
b, ft. | 326.8 | 326.8 | 4 | 325.0 | 0.55 |
S, | 22,087.5 | 22,099.3 | 0.05 | 21,907.8 | 0.81 |
, lbs. | 1,542,000 | 1,542,463 | 0.03 | 1,542,009 | 5.95 |
, lbs. | 432,500 | 432,760 | 0.06 | 432,556 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, R.S.; Hosder, S. Mission-Driven Inverse Design of Blended Wing Body Aircraft with Machine Learning. Aerospace 2024, 11, 137. https://doi.org/10.3390/aerospace11020137
Sharma RS, Hosder S. Mission-Driven Inverse Design of Blended Wing Body Aircraft with Machine Learning. Aerospace. 2024; 11(2):137. https://doi.org/10.3390/aerospace11020137
Chicago/Turabian StyleSharma, Rohan S., and Serhat Hosder. 2024. "Mission-Driven Inverse Design of Blended Wing Body Aircraft with Machine Learning" Aerospace 11, no. 2: 137. https://doi.org/10.3390/aerospace11020137
APA StyleSharma, R. S., & Hosder, S. (2024). Mission-Driven Inverse Design of Blended Wing Body Aircraft with Machine Learning. Aerospace, 11(2), 137. https://doi.org/10.3390/aerospace11020137