A330-300 Wake Encounter by ARJ21 Aircraft
Abstract
:1. Introduction
2. Numerical Method and Adaptive Grid
2.1. Numerical Method
2.2. Wake Vortex Model
2.3. Ambient Turbulence Field by Rogallo Spectrum
2.4. Grid Independence
2.5. Computational Domain and Boundary Conditions
2.6. Dynamic Self-Adaptive Grid
3. Simulation Results
4. Lidar Measurements
5. Hazard Zones
5.1. Roll Moment Coefficient
5.2. Hazard Zone
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
vortex circulation, m2/s | |
5 m to 15 m circulation, m2/s | |
initial vortex descent velocity, m/s | |
wingspan, m | |
following aircraft wingspan, m | |
vortex spacing, m | |
distance from vortex center, m | |
turbulence dissipation rate, m2/s3 | |
vortex tangential velocity, m/s | |
vortex vertical velocity, m/s | |
pressure, Pa | |
density, kg/m3 | |
kinematic viscosity, m2/s | |
velocity components, m/s | |
vorticity components, s−1 | |
wavenumber in a component in spectral space | |
Kolmogorov wavenumber | |
wavenumber of peak spectrum value | |
time, s | |
time step, s | |
axial coordinate, m | |
lateral coordinate, m | |
vertical coordinate, m | |
angle of attack, ° | |
approach airspeed of the following aircraft, m/s | |
lift, N | |
wing area, m2 | |
induced rolling moment, N·m | |
Subscripts | |
vortex core | |
initial wake vortex parameters | |
x (y, z)-direction | |
Superscripts | |
non-dimensional wake vortex parameters |
References
- Gerz, T.; Holzäpfel, F.; Darracq, D. Commercial aircraft wake vortices. Prog. Aerosp. Sci. 2002, 38, 181–208. [Google Scholar] [CrossRef]
- Hallock, J.N.; Holzäpfel, F. A review of recent wake vortex research for increasing airport capacity. Prog. Aerosp. Sci. 2018, 98, 27–36. [Google Scholar] [CrossRef]
- Proctor, F. The NASA-Langley wake vortex modelling effort in support of an operational aircraft spacing system. In Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 12–15 January 1998; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1998. [Google Scholar] [CrossRef]
- Switzer, G.; Proctor, F. Numerical study of wake vortex behavior in turbulent domains with ambient stratification. In Proceedings of the 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2000; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2000. [Google Scholar] [CrossRef]
- Han, J.; Lin, Y.-L.; Schowalter, D.G.; Arya, S.P.; Proctor, F.H. Within Homogeneous Turbulence: Crow Instability Large Eddy Simulation of Aircraft Wake Vortices. AIAA J. 2000, 38, 292–300. [Google Scholar] [CrossRef]
- Crow, S.C. Stability theory for a pair of trailing vortices. AIAA J. 1970, 8, 2172–2179. [Google Scholar] [CrossRef]
- Proctor, F.H.; Switzer, G.F. Numerical simulation of aircraft trailing vortices. In Proceedings of the Aviation, Range and Aerospace Meteorology, Orlando, FL, USA, 11–15 September 2000. [Google Scholar]
- Proctor, F. Numerical Study of a Long-Lived, Isolated Wake Vortex in Ground Effect. In Proceedings of the 6th AIAA Atmospheric and Space Environments Conference, Atlanta, GA, USA, 16–20 June 2014; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2014. [Google Scholar] [CrossRef]
- Holzäpfel, F.; Steen, M. Aircraft Wake-Vortex Evolution in Ground Proximity: Analysis and Parameterization. AIAA J. 2007, 45, 218–227. [Google Scholar] [CrossRef]
- Lin, M.; Huang, W.; Zhang, Z.; Xu, C.; Cui, G. Numerical study of aircraft wake vortex evolution near ground in stable atmospheric boundary layer. Chin. J. Aeronaut. 2017, 30, 1866–1876. [Google Scholar] [CrossRef]
- Robins, R.E.; Delisi, D.P. Numerical study of vertical shear and stratification effects on the evolution of a vortex pair. AIAA J. 1990, 28, 661–669. [Google Scholar] [CrossRef]
- Proctor, F.; Hinton, D.; Han, J.; Schowalter, D.; Lin, Y.-L.; Proctor, F.; Hinton, D.; Han, J.; Schowalter, D.; Lin, Y.-L. Two dimensional wake vortex simulations in the atmosphere—Preliminary sensitivity studies. In Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1997; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1997. [Google Scholar] [CrossRef]
- Corjon, A.; Poinsot, T. Behavior of Wake Vortices Near Ground. AIAA J. 1997, 35, 849–855. [Google Scholar] [CrossRef]
- Holzäpfel, F.; Gerz, T.; Baumann, R. The turbulent decay of trailing vortex pairs in stably stratified environments. Aerosp. Sci. Technol. 2001, 5, 95–108. [Google Scholar] [CrossRef]
- Misaka, T.; Holzäpfel, F.; Gerz, T. Large-Eddy Simulation of Aircraft Wake Evolution from Roll-Up Until Vortex Decay. AIAA J. 2015, 53, 2646–2670. [Google Scholar] [CrossRef]
- Misaka, T.; Holzäpfel, F.; Hennemann, I.; Gerz, T.; Manhart, M.; Schwertfirm, F. Vortex bursting and tracer transport of a counter-rotating vortex pair. Phys. Fluids 2012, 24, 025104. [Google Scholar] [CrossRef]
- De Visscher, I.; Bricteux, L.; Winckelmans, G. Aircraft Vortices in Stably Stratified and Weakly Turbulent Atmospheres: Simulation and Modeling. AIAA J. 2013, 51, 551–566. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, D.; Zhou, J.; Pan, W.; Xu, Z.; Cai, J. Numerical simulation of wake vortex for the flight near the ground with different boundary conditions. Eng. Appl. Comput. Fluid Mech. 2022, 16, 484–500. [Google Scholar] [CrossRef]
- Lin, M.; Cui, G.; Zhang, Z. Large eddy simulation of aircraft wake vortex with self-adaptive grid method. Appl. Math. Mech.-Engl. Ed. 2016, 37, 1289–1304. [Google Scholar] [CrossRef]
- Gnoffo, P.A. A finite-volume, adaptive grid algorithm applied to planetary entry flowfields. AIAA J. 1983, 21, 1249–1254. [Google Scholar] [CrossRef]
- Köpp, F.; Rahm, S.; Smalikho, I.; Dolfi, A.; Cariou, J.-P.; Harris, M.; Young, R.I. Comparison of Wake-Vortex Parameters Measured by Pulsed and Continuous-Wave Lidars. J. Aircr. 2005, 42, 916–923. [Google Scholar] [CrossRef]
- Smalikho, I.N.; Banakh, V.A. Estimation of aircraft wake vortex parameters from data measured with a 15-μm coherent Doppler lidar. Opt. Lett. 2015, 40, 3408. [Google Scholar] [CrossRef]
- Pan, W.; Wu, Z.; Zhang, X. Identification of Aircraft Wake Vortex Based on SVM. Math. Probl. Eng. 2020, 2020, 9314164. [Google Scholar] [CrossRef]
- Pan, W.; Yin, H.; Leng, Y.; Zhang, X. Recognition of Aircraft Wake Vortex Based on Random Forest. IEEE Access 2022, 10, 8916–8923. [Google Scholar] [CrossRef]
- Pan, W.-J.; Leng, Y.-F.; Wu, T.-Y.; Xu, Y.-X.; Zhang, X.-L. Conv-Wake: A Lightweight Framework for Aircraft Wake Recognition. J. Sens. 2022, 2022, 3050507. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Y.; Li, D.; Zhang, Z.; Pan, W. Numerical simulation of aircraft wake vortex evolution and wake encounters based on adaptive mesh method. Eng. Appl. Comput. Fluid Mech. 2020, 14, 1445–1457. [Google Scholar] [CrossRef]
- Pan, W.; Wang, H.; Luo, Y.; Wang, J.; Han, S. Research on Separation and Emission Reduction of Regional Airliner Based on Wake Encounter Response Model. J. Adv. Transp. 2022, 2022, 3584461. [Google Scholar] [CrossRef]
- Pan, W.; Wang, J.; Xu, Y.; Jiang, Q.; Luo, Y. Approach and Landing Aircraft Wake Encounter Risk Based on Reynolds-Averaged Navier-Stokes Numerical Simulation. Int. J. Aerosp. Eng. 2022, 2022, 9126755. [Google Scholar] [CrossRef]
- Ahmad, N.N.; Proctor, F. Review of Idealized Aircraft Wake Vortex Models. In Proceedings of the 52nd Aerospace Sciences Meeting, National Harbor, MD, USA, 13–17 January 2014; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2014. [Google Scholar] [CrossRef]
- Proctor, F. Numerical simulation of wake vortices measured during the Idaho Falls and Memphis field programs. In Proceedings of the 14th Applied Aerodynamics Conference, New Orleans, LA, USA, 17–20 June 1996; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1996. [Google Scholar] [CrossRef]
- Burnham, D.C.; Hallock, J.N. Chicago monostatic acoustic vortex sensing system, volume iv: Wake vortex decay. In Report No. DOT/FAA/RD-79-103; National Technical Information Service: Alexandria, VA, USA, 1982; Volume 4. [Google Scholar]
- Leweke, T.; Williamson, C.H.K. Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 1998, 360, 85–119. [Google Scholar] [CrossRef]
- Rogallo, R.S. Numerical Experiments in Homogeneous Turbulence; National Aeronautics and Space Administration: Washington, DC, USA, 1981; Volume 81315. [Google Scholar]
- Kolmogorov, A.N. Dissipation of energy in the locally isotropic turbulence. Proc. R. Soc. Lond. A 1991, 434, 15–17. [Google Scholar] [CrossRef]
- Hennemann, I.; Holzäpfel, F. Large-eddy simulation of aircraft wake vortex deformation and topology. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2011, 225, 1336–1350. [Google Scholar] [CrossRef]
- Sarpkaya, T. New Model for Vortex Decay in the Atmosphere. J. Aircr. 2000, 37, 53–61. [Google Scholar] [CrossRef]
- Sarpkaya, T. Decay of Wake Vortices of Large Aircraft. AIAA J. 1998, 36, 1671–1679. [Google Scholar] [CrossRef]
- Lang, S.; Tittsworth, J.; Bryant, W.; Wilson, P.; Lepadatu, C.; Delisi, D.; Lai, D.; Greene, G. Progress on an ICAO Wake Turbulence Re-Categorization Effort. In Proceedings of the AIAA Atmospheric and Space Environments Conference, Toronto, ON, Canada, 2–5 August 2010; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2010. [Google Scholar] [CrossRef]
- Acheson, D.J. Elementary Fluid Dynamics. J. Acoust. Soc. Am. 1991, 89, 3020. [Google Scholar] [CrossRef]
- Van Baren, G.; Treve, V.; Rooseleer, F.; Van Der Geest, P.; Heesbeen, B. Assessing the severity of wake encounters in various aircraft types in piloted flight simulations. In Proceedings of the AIAA Modeling and Simulation Technologies Conference, Grapevine, YX, USA, 9–13 January 2017; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2017. [Google Scholar] [CrossRef]
Aircraft Type | ICAO | ICAO RECAT |
---|---|---|
ARJ21 | Medium | CAT-F |
A330-300 | Heavy | CAT-B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, H.; Pan, W.; Wang, Y.; Luo, Y. A330-300 Wake Encounter by ARJ21 Aircraft. Aerospace 2024, 11, 144. https://doi.org/10.3390/aerospace11020144
Luo H, Pan W, Wang Y, Luo Y. A330-300 Wake Encounter by ARJ21 Aircraft. Aerospace. 2024; 11(2):144. https://doi.org/10.3390/aerospace11020144
Chicago/Turabian StyleLuo, Haotian, Weijun Pan, Yidi Wang, and Yuming Luo. 2024. "A330-300 Wake Encounter by ARJ21 Aircraft" Aerospace 11, no. 2: 144. https://doi.org/10.3390/aerospace11020144
APA StyleLuo, H., Pan, W., Wang, Y., & Luo, Y. (2024). A330-300 Wake Encounter by ARJ21 Aircraft. Aerospace, 11(2), 144. https://doi.org/10.3390/aerospace11020144