Parameterized Reduced-Order Models for Probabilistic Analysis of Thermal Protection System Based on Proper Orthogonal Decomposition
Abstract
:1. Introduction
2. Generation of Random Heat Flux Samples
2.1. Analysis of Re-Entry Trajectory
2.2. Calculation of Surface Heat Flux
3. Characterization Method of Field Variables by Uncoupled POD
3.1. Conventional Proper Orthogonal Decomposition
Algorithm 1: Conventional POD for uniformly distributed fields |
1: procedure POD() 2: Assembling the random heat flux matrix 3: Solving the eigenvectors and eigenvalues: 4: Determining the truncation order r using Equation (13) 5: Setting the POD bases , and reduced coefficients 6: return 7: end procedure |
3.2. Augmented Snapshots Matrix
3.3. Uncoupled Method of POD
Algorithm 2: Uncoupled POD for non-uniform random field |
1: procedure UPOD() 2: Assembling the random field matrix and 3: Solving the spatial bases: POD() and temportal bases: POD() 4: Determining the first-level reduced coefficients at sample k: 5: Assembling 6: Collecting all coefficients at sample bases: 7: Solving the second-level POD bases: 8: return 9: end procedure |
4. Parameterized ROMs Based on Uncoupled POD
4.1. Gaussian Process Regression Models
4.2. Frameworks of Uncoupled POD
Algorithm 3: UPOD-GPR method of POD for probabilistic analysis of TPS |
1: procedure UPOD-GPR(,, ) 2: Sampling random heat flux field and calculating temperature response field . 3: Assembling the augmented snapshots matrix , of random flux field and , of temperature response field. 4: Solving the reduced coefficients of random flux field by Algorithm 2. 5: Solving the reduced coefficients of temperature responses field by Algorithm 2. 6: Training the mapping relationship between and by GPR model. 7: Determining the coefficient of the random heat flux field for the test samples . 8: Evaluating outputs . 9: Computing by: . 10: Reshaping matrix to matrix . 11: Determining approximate solutions . 12: return . 13: end procedure |
4.3. Construction of GPR Models with Input of Uncertain Parameters
- Sample trajectory parameters (initial velocity, flight-path angle. and ballistic coefficient) using Latin hypercube sampling method.
- Generate the random heat flux field () by inputting random trajectory parameters using numerical integration or software. Then, generate the augmented matrices and and obtain the corresponding bases and .
- Calculate the UPOD coefficient matrix corresponding to field . Generate the random parameter matrix by sampling which defines the uncertainties of material properties and geometries.
- Build the finite element models (FEMs) considering the random parameter matrix . Then, treating random heat flux as the thermal load to calculate the temperature response field () of interest using FEA.
- Calculate the spatial bases and temporal bases corresponding to field (). Then, calculate the UPOD coefficient matrix .
- Assemble sample matrix shown in Equation (36) using matrix , , and . Then, construct the UPOD-GPR method by the sample of matrix .
- Resample the trajectory parameters and random parameter matrix . Then, generate the test random flux field () and corresponding coefficient matrix .
- Reconstruct the thermal response field () of the test samples using Algorithm 3 after predicting its coefficient .
5. Numerical Examples
5.1. Rigid Ceramic Tile TPS
5.2. Typical Re-Entry Capsule Model
6. Conclusions
- The UPOD method is useful to describing the random field of heat flux by a low-dimensional coefficient matrix. The whole random field can be well represented by using only the first few orders of feature information, which makes it possible to establish the subsequent surrogate model.
- Using the GPR model with a random field as input for predicting thermal responses results in increased accuracy. The UPOD-GPR construction approach based on a random field exhibits practicality and feasibility, significantly reducing the computational complexity in the probabilistic characteristic analysis of TPSs while maintaining high accuracy.
- This method can accurately and rapidly predict the temperature responses of TPSs and thermal structures throughout their entire operational duration when provided with input heat flux field and structural parameters. It provides a robust reference for the design process.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Uyanna, O.; Najafi, H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects. Acta Astronaut. 2020, 176, 341–356. [Google Scholar] [CrossRef]
- Wright, M.J.; Bose, D.; Chen, Y.K. Probabilistic modeling of aerothermal and thermal protection material response uncertainties. AIAA J. 2007, 45, 399–410. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, B.; Du, S. Probabilistic modeling of transient heat transfer and assessment of thermal reliability of fibrous insulation under aerodynamic heating conditions. Int. J. Therm. Sci. 2009, 48, 1302–1310. [Google Scholar] [CrossRef]
- Green, L.L. The Challenges of Credible Thermal Protection System Reliability Quantification. In Proceedings of the International Planetary Probe Workshop (IPPW-10), San Jose, CA, USA, 17 June 2013. [Google Scholar]
- Fishman, G. Monte Carlo: Concepts, Algorithms, and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Sudret, B.; Marelli, S.; Wiart, J. Surrogate models for uncertainty quantification: An overview. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 793–797. [Google Scholar]
- Li, M.; Wang, Z. Surrogate model uncertainty quantification for reliability-based design optimization. Reliab. Eng. Syst. Saf. 2019, 192, 106432. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, J.; Wang, R. Basic Framework and Main Methods of Uncertainty Quantification. Math. Probl. Eng. 2020, 2020, e6068203. [Google Scholar] [CrossRef]
- Deng, S.; Yao, J.; Wang, L.; Xin, J.; Hu, N. Comparative Studies of Surrogate Models for Response Analysis of Mistuned Bladed Disks. Int. J. Comput. Methods 2020, 17, 2050012. [Google Scholar] [CrossRef]
- Xin, J.; Yao, J.; Hong, W.; Qu, Q.; Xu, X. Investigation of Probabilistic Design Method for Multi-layer Thermal Protection System. In Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference, Bengaluru, India, 28 May–1 June 2017; p. 2183. [Google Scholar]
- Fang, X.; Chen, J.; Lu, B.; Wang, Y.; Guo, S.; Feng, Z.; Xu, M. Optimized design of sandwich panels for integral thermal protection systems. Struct. Multidiscip. Optim. 2017, 55, 13–23. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Li, J.J.; Zhang, C.X.; Zhang, W.J.; Lin, X.; He, X.D.; Yao, Y.T. Thermo-structural optimization of integrated thermal protection panels with one-layer and two-layer corrugated cores based on simulated annealing algorithm. Struct. Multidiscip. Optim. 2015, 51, 479–494. [Google Scholar] [CrossRef]
- Rivier, M.; Lachaud, J.; Congedo, P.M. Ablative thermal protection system under uncertainties including pyrolysis gas composition. Aerosp. Sci. Technol. 2019, 84, 1059–1069. [Google Scholar] [CrossRef]
- Brune, A.J.; Hosder, S.; Edquist, K.T.; Tobin, S. Uncertainty analysis of thermal protection system response of a hypersonic inflatable aerodynamic decelerator. In Proceedings of the 46th AIAA Thermophysics Conference, Washington, DC, USA, 13–17 June 2016; p. 3535. [Google Scholar]
- Zhang, K.; Yao, J.; Xin, J.; Hu, N. Probabilistic Heat Transfer Problems in Thermal Protection Systems. Heat Transf. Model. Methods Appl. 2018, 3, 43. [Google Scholar]
- Kolodziej, P.; Rasky, D. Estimates of the orbiter RSI thermal protection system thermal reliability. In Proceedings of the 36th AIAA Thermophysics Conference, Orlando, FL, USA, 23–26 June 2002; p. 3766. [Google Scholar]
- Bose, D.; Palmer, G.; Wright, M. Uncertainty Analysis of Laminar Aeroheating Predictions for Mars Entries. J. Thermophys. Heat Transf. 2006, 20, 652–662. [Google Scholar] [CrossRef]
- Brune, A.J.; West IV, T.K.; Hosder, S. Uncertainty quantification of planetary entry technologies. Prog. Aerosp. Sci. 2019, 111, 100574. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, T.; Zhu, X.; Yang, K.; Ge, Q.; Wang, M.; Yang, Q. Inverse estimation of hot-wall heat flux using nonlinear artificial neural networks. Measurement 2021, 181, 109648. [Google Scholar] [CrossRef]
- Lu, J.; Li, J.; Song, Z.; Zhang, W.; Yan, C. Uncertainty and sensitivity analysis of heat transfer in hypersonic three-dimensional shock waves/turbulent boundary layer interaction flows. Aerosp. Sci. Technol. 2022, 123, 107447. [Google Scholar] [CrossRef]
- Alpert, H.S.; Saunders, D.A.; Mahzari, M.; Monk, J.D.; White, T.R.; West, T.K. Inverse Estimation and Sensitivity Analysis of Mars 2020 Entry Aeroheating Environments. J. Spacecr. Rocket. 2023, 60, 899–911. [Google Scholar] [CrossRef]
- Zhang, K.; Yao, J.; He, Z.; Xin, J.; Fan, J. Probabilistic Transient Heat Conduction Analysis Considering Uncertainties in Thermal Loads Using Surrogate Model. J. Spacecr. Rocket. 2021, 58, 1030–1042. [Google Scholar] [CrossRef]
- Lucia, D.J.; Beran, P.S.; Silva, W.A. Reduced-order modeling: New approaches for computational physics. Prog. Aerosp. Sci. 2004, 40, 51–117. [Google Scholar] [CrossRef]
- Rowley, C.W.; Colonius, T.; Murray, R.M. Model reduction for compressible flows using POD and Galerkin projection. Phys. D Nonlinear Phenom. 2004, 189, 115–129. [Google Scholar] [CrossRef]
- Couplet, M.; Basdevant, C.; Sagaut, P. Calibrated reduced-order POD-Galerkin system for fluid flow modelling. J. Comput. Phys. 2005, 207, 192–220. [Google Scholar] [CrossRef]
- Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T. Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison. Comput. Methods Appl. Mech. Eng. 2012, 237, 10–26. [Google Scholar] [CrossRef]
- Falkiewicz, N.J.; Cesnik, C.E.S.; Crowell, A.R.; McNamara, J.J. Reduced-Order Aerothermoelastic Framework for Hypersonic Vehicle Control Simulation. AIAA J. 2011, 49, 1625–1646. [Google Scholar] [CrossRef]
- Crowell, A.R.; McNamara, J.J. Model Reduction of Computational Aerothermodynamics for Hypersonic Aerothermoelasticity. AIAA J. 2012, 50, 74–84. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Long, T.; Yue, Z. A reduced order aerothermodynamic modeling framework for hypersonic vehicles based on surrogate and POD. Chin. J. Aeronaut. 2015, 28, 1328–1342. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Zhou, S.; Yue, Z. Adding-point strategy for reduced-order hypersonic aerothermodynamics modeling based on fuzzy clustering. Chin. J. Mech. Eng. 2016, 29, 983–991. [Google Scholar] [CrossRef]
- Xiaoxuan, Y.; Jinglong, H.; Bing, Z.; Haiwei, Y. Model reduction of aerothermodynamic for hypersonic aerothermoelasticity based on POD and Chebyshev method. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 3734–3748. [Google Scholar] [CrossRef]
- Pérez, J.M.; Jimenez, C. Characteristics of linear modal instabilities in hypersonic flows with detached shock waves. Results Eng. 2021, 10, 100219. [Google Scholar] [CrossRef]
- Huang, D.; Sadagopan, A.; Düzel, Ü.; Hanquist, K.M. Study of fluid–thermal–structural interaction in high-temperature high-speed flow using multi-fidelity multi-variate surrogates. J. Fluids Struct. 2022, 113, 103682. [Google Scholar] [CrossRef]
- Putnam, Z.R.; Braun, R.D. Extension and enhancement of the Allen–Eggers analytical ballistic entry trajectory solution. J. Guid. Control. Dyn. 2015, 38, 414–430. [Google Scholar] [CrossRef]
- Mehta, P.M.; Walker, A.; Brown, M.; Minisci, E.; Vasile, M.L. Sensitivity analysis towards probabilistic re-entry modeling of spacecraft and space debris. In Proceedings of the AIAA Modeling and Simulation Technologies Conference, Dallas, TX, USA, 22–26 June 2015; p. 3098. [Google Scholar]
- Mehta, P.; Minisci, E.; Vasile, M.; Walker, A.C.; Brown, M. An open source hypersonic aerodynamic and aerothermodynamic modelling tool. In Proceedings of the 8th European Symposium on Aerothermodynamics for Space Vehicles, Lisbon, Portugal, 2–6 March 2015. [Google Scholar]
- Falchi, A.; Renato, V.; Minisci, E.; Vasile, M. Fostrad: An advanced open source tool for re-entry analysis. In Proceedings of the 15th Reinventing Space Conference, Glasgow, UK, 24–26 October 2017. [Google Scholar]
- Choi, S.; Canfield, R.A.; Grandhi, R.V. Estimation of structural reliability for Gaussian random fields. Struct. Infrastruct. Eng. 2006, 2, 161–173. [Google Scholar] [CrossRef]
- Xi, Z.; Youn, B.D.; Jung, B.C.; Yoon, J.T. Random field modeling with insufficient field data for probability analysis and design. Struct. Multidiscip. Optim. 2015, 51, 599–611. [Google Scholar] [CrossRef]
- Hall, K.C.; Thomas, J.P.; Dowell, E.H. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA J. 2000, 38, 1853–1862. [Google Scholar] [CrossRef]
- Białecki, R.; Kassab, A.; Fic, A. Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis. Int. J. Numer. Methods Eng. 2005, 62, 774–797. [Google Scholar] [CrossRef]
- Dolci, V.; Arina, R. Proper orthogonal decomposition as surrogate model for aerodynamic optimization. Int. J. Aerosp. Eng. 2016, 2016, 8092824. [Google Scholar] [CrossRef]
- Sirovich, L. Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Math. 1987, 45, 561–571. [Google Scholar] [CrossRef]
- Zhu, Q.H.; Liang, Y.; Gao, X.W. A proper orthogonal decomposition analysis method for transient nonlinear heat conduction problems. Part 1: Basic algorithm. Numer. Heat Transf. Part B Fundam. 2020, 77, 87–115. [Google Scholar] [CrossRef]
- Lu, K.; Chen, Y.; Jin, Y.; Hou, L. Application of the transient proper orthogonal decomposition method for order reduction of rotor systems with faults. Nonlinear Dyn. 2016, 86, 1913–1926. [Google Scholar] [CrossRef]
- Audouze, C.; De Vuyst, F.; Nair, P.B. Nonintrusive reduced-order modeling of parametrized time-dependent partial differential equations. Numer. Methods Partial. Differ. Equ. 2013, 29, 1587–1628. [Google Scholar] [CrossRef]
- Li, T.; Deng, S.; Zhang, K.; Wei, H.; Wang, R.; Fan, J.; Xin, J.; Yao, J. A nonintrusive parametrized reduced-order model for periodic flows based on extended proper orthogonal decomposition. Int. J. Comput. Methods 2021, 18, 2150035. [Google Scholar] [CrossRef]
- Li, T.; Pan, T.; Zhou, X.; Zhang, K.; Yao, J. Non-Intrusive Reduced-Order Modeling Based on Parametrized Proper Orthogonal Decomposition. Energies 2023, 17, 146. [Google Scholar] [CrossRef]
- Rasmussen, C.E. Gaussian processes in machine learning. In Summer School on Machine Learning; Springer: Berlin/Heidelberg, Germany, 2003; pp. 63–71. [Google Scholar]
- MacKay, D.J. Introduction to Gaussian processes. NATO ASI Ser. F Comput. Syst. Sci. 1998, 168, 133–166. [Google Scholar]
Parameter | Sample Return | Strategic |
---|---|---|
Initial velocity, | 12.8 km/s | 7.2 km/s |
Flight-path angle, | −8.2 deg | −30.0 deg |
Initial altitude, | 125 km | 125 km |
Ballistic coefficient, | 60 | 10,000 |
Case Number | Initial Velocity, km/s | Flight-Path Angle, Deg | Ballistic Coefficient kg/m2 |
---|---|---|---|
0 | 13.46 | −6.70 | 59.32 |
1 | 12.09 | −7.87 | 62.57 |
2 | 11.01 | −7.92 | 60.08 |
3 | 13.63 | −8.91 | 60.19 |
4 | 13.97 | −7.24 | 57.33 |
Case Number | Initial Velocity, km/s | Flight-Path Angle, deg | Ballistic Coefficient kg/m2 | Time of Re-Entry, s |
---|---|---|---|---|
0 | 11.8733 | −8.1269 | 283.8589 | 20 |
1 | 9.7711 | −7.9425 | 305.0772 | 34 |
2 | 10.0655 | −6.5829 | 264.9307 | 40 |
3 | 12.5229 | −6.7248 | 288.9090 | 48 |
Ceramic Tile ( kg/m3) | Isolation Pad ( kg/m3) | Skin ( kg/m3) | ||||||
---|---|---|---|---|---|---|---|---|
(°C) | (W/m°C) | (J/kg°C) | (°C) | (W/m°C) | (J/kg°C) | (°C) | (W/m°C) | (J/kg°C) |
−17.6 | 0.0485 | 628.3 | −17.6 | 0.0308 | 1306.3 | −73.2 | 163.0 | 787.0 |
(0.0317) | ||||||||
121.3 | 0.0571 | 879.2 | 38.0 | 0.0360 | - | −17.8 | - | - |
(0.0390) | ||||||||
260.2 | 0.0727 | 1055.1 | 93.5 | 0.0415 | 1339.8 | 21.0 | - | - |
(0.0479) | ||||||||
399.1 | 0.0883 | 1151.4 | 149.1 | 0.0471 | - | 26.9 | 177.0 | 875.0 |
(0.0563) | ||||||||
538.0 | 0.1091 | 1205.8 | 204.6 | 0.0524 | 1402.6 | 37.8 | - | - |
(0.0679) | ||||||||
676.9 | 0.1437 | 1239.3 | 315.7 | 0.0675 | - | 93.3 | - | - |
(0.0852) | ||||||||
815.7 | 0.1887 | 1256.0 | 426.9 | 0.0865 | - | 126.9 | 186.0 | 925.0 |
(0.1068) | ||||||||
954.6 | 0.2423 | 1268.6 | 615.7 | - | 1444.5 | 148.9 | - | - |
(0.1328) | ||||||||
1093.0 | 0.3116 | - | - | - | - | 204.4 | - | - |
(0.1631) | ||||||||
1260.0 | 0.4154 | - | - | - | - | 260.0 | - | - |
(0.2008) | ||||||||
1371.0 | - | - | - | - | - | 315.6 | - | - |
(0.2406) | ||||||||
1538.0 | - | - | - | - | - | 326.9 | - | 1042.0 |
(0.3116) | ||||||||
1649.0 | - | - | - | - | - | 371.1 | - | - |
(0.3791) |
Category | Parameter | Component | Mean | STD | Lower Limit | Upper Limit |
---|---|---|---|---|---|---|
Thickness (m) | H1 | Ceramic tile | ||||
H2 | Isolation pad | |||||
H3 | Skin | |||||
Specific heat * (J/kg°C) | C1 | Ceramic tile | 661.4 | 33.070 | 562.19 | 760.61 |
C2 | Isolation pad | 1310.0 | 65.50 | 1113.5 | 1506.5 | |
C3 | Skin | 856.4 | 42.32 | 727.94 | 984.86 | |
Thermal conductivity * (W/m°C) | K | Ceramic tile of in-plane direction | 0.04946 | 0.04204 | 0.05688 | |
K | Ceramic tile of thickness direction | 0.03228 | 0.02744 | 0.03712 | ||
K2 | Isolation pad | 0.03226 | 0.02742 | 0.03710 | ||
K3 | Skin | 172.2 | 8.610 | 146.37 | 198.03 |
top nodes (s) | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
1.59 | 1.74 | 1.95 | 2.19 | 2.44 | 2.68 | 2.90 | 3.12 | 3.32 | 3.50 | |
bottom nodes (s) | 601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 |
2.62 | 2.61 | 2.59 | 2.58 | 2.56 | 2.54 | 2.53 | 2.52 | 2.50 | 2.49 |
Parameter | Component | Mean Value | Standard Deviation |
---|---|---|---|
Thickness h (mm) | Thermal protection panel | 4 | 0.2 |
First insulation layer | 25 | 1.25 | |
Second insulation layer | 40 | 2.00 | |
Vehicle structure | 4 | 0.20 | |
Specific heat * (J/kg°C) | Thermal protection panel | 1000.0 | 50 |
First insulation layer | 900.3 | 45.02 | |
Second insulation layer | 990.0 | 49.50 | |
Vehicle structure | 640.0 | 32.00 | |
Thermal conductivity * (W/m°C) | Thermal protection panel | 60.0 | 3 |
First insulation layer | 0.088 | 0.0044 | |
Second insulation layer | 0.072 | 0.0036 | |
Vehicle structure | 177.0 | 8.85 | |
Other parameters | Component | Value | - |
Density () | Thermal protection panel | 2300 | - |
First insulation layer | 400 | - | |
Second insulation layer | 170 | - | |
Vehicle structure | 2770 | - | |
Space-temp (°C) | Space radiation point | −60 | - |
Initial-temp (°C) | Structure | 25 | - |
Emissivity | Radiation layer | 0.85 | - |
Shape factor | Radiation surface | 1 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Yao, J.; Zhu, W.; Cao, Z.; Li, T.; Xin, J. Parameterized Reduced-Order Models for Probabilistic Analysis of Thermal Protection System Based on Proper Orthogonal Decomposition. Aerospace 2024, 11, 269. https://doi.org/10.3390/aerospace11040269
Zhang K, Yao J, Zhu W, Cao Z, Li T, Xin J. Parameterized Reduced-Order Models for Probabilistic Analysis of Thermal Protection System Based on Proper Orthogonal Decomposition. Aerospace. 2024; 11(4):269. https://doi.org/10.3390/aerospace11040269
Chicago/Turabian StyleZhang, Kun, Jianyao Yao, Wenxiang Zhu, Zhifu Cao, Teng Li, and Jianqiang Xin. 2024. "Parameterized Reduced-Order Models for Probabilistic Analysis of Thermal Protection System Based on Proper Orthogonal Decomposition" Aerospace 11, no. 4: 269. https://doi.org/10.3390/aerospace11040269
APA StyleZhang, K., Yao, J., Zhu, W., Cao, Z., Li, T., & Xin, J. (2024). Parameterized Reduced-Order Models for Probabilistic Analysis of Thermal Protection System Based on Proper Orthogonal Decomposition. Aerospace, 11(4), 269. https://doi.org/10.3390/aerospace11040269