Observation of Oblique Laser-Supported Detonation Wave Propagating in Atmospheric Air
Abstract
:1. Introduction
2. Measurement of the Laser Intensity Distribution
3. Propagation Velocity of Laser-Supported Detonation along the Laser Axis
4. Propagation Velocity of Oblique Laser-Supported Detonation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
a | Speed of sound, m/s |
D | Equivalent beam diameter, mm |
f | Focal length, mm |
F | F-number |
M2 | Beam quality factor |
Local laser intensity, W/m2 | |
Laser intensity on the beam axis, W/m2 | |
Normalized laser intensity | |
t | Elapsed time after laser breakdown, s |
r, z | Cylindrical coordinates, m |
r1 | Direction of Gaussian intensity profile |
r2 | Direction of top-hat intensity profile |
Propagation velocity, m/s | |
Normalized propagation velocity | |
WG0 | Beam waist size of r1 direction, m |
WT0 | Beam waist size of r2 direction, m |
θ | Angle of a wavefront, rad |
ρ1 | Atmospheric gaseous density, kg/m3 |
γ2 | Specific heat ratio behind shock wave |
References
- Komurasaki, K.; Wang, B. Laser Propulsion. In Encyclopedia of Aerospace Engineering; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2010. [Google Scholar]
- Katsurayama, H.; Komurasaki, K.; Arakawa, Y. A preliminary study of pulse-laser powered orbital launcher. Acta Astronaut. 2009, 65, 1032–1041. [Google Scholar] [CrossRef]
- Myrabo, L.M.; Messitt, D.G.; Mead, F.B., Jr. Ground and flight tests of a laser propelled vehicle. AIAA Paper 1998, 98–1001. [Google Scholar]
- Sasoh, S.; Kim, J.H.; Yamashita, K.; Sakai, T. Supersonic aerodynamic performance of truncated cones with repetitive laser pulse energy depositions. Shock. Waves 2014, 24, 59–67. [Google Scholar] [CrossRef]
- Mori, K.; Komurasaki, K.; Arakawa, Y. Threshold Laser Power Density for Regime Transition of a Laser Absorption Wave in a Reduced-density Air Atmosphere. Appl. Phys. Lett. 2006, 88, 121502-1–121502-3. [Google Scholar] [CrossRef]
- Mori, K.; Komurasaki, K.; Arakawa, Y. Influence of the focusing f number on the heating regime transition in laser absorption waves. J. Appl. Phys. 2002, 92, 5663–5667. [Google Scholar] [CrossRef]
- Ushio, M.; Komurasaki, K.; Kawamura, K.; Arakawa, K. Effect of laser supported detonation wave confinement on termination conditions. Shock Waves 2008, 18, 155–157. [Google Scholar] [CrossRef]
- Wang, B.; Komurasaki, K.; Arakawa, Y. Energy conversion in a glass-laser-induced blast wave in air. J. Appl. Phys. 2010, 108, 124911. [Google Scholar] [CrossRef]
- Wang, B.; Komurasaki, K.; Arakawa, Y. Influence of ambient air pressure on the energy conversion of laser-breakdown induced blast waves. J. Phys. D 2013, 46, 375201. [Google Scholar] [CrossRef]
- Mori, K.; Komurasaki, K.; Arakawa, Y. Energy transfer from a laser pulse to a blast wave in reduced-pressure air atmospheres. J. Appl. Phys. 2004, 95, 5979–5983. [Google Scholar] [CrossRef]
- Shimamura, K.; Hatai, K.; Kawamura, K.; Fukui, A.; Fukuda, A.; Wang, B.; Yamaguchi, T.; Komurasaki, K.; Arakawa, Y. Internal structure of laser supported detonation waves by two-wavelength Mach–Zehnder interferometer. J. Appl. Phys. 2011, 109, 084910. [Google Scholar] [CrossRef]
- Shimamura, K.; Komurasaki, K.; Ofosu, J.A.; Koizumi, H. Precursor Ionization and Propagation Velocity of a Laser-Absorption Wave in 1.053 and 10.6- μm Wavelengths Laser Radiation. IEEE Trans. Plasma Sci. 2014, 42, 3121. [Google Scholar] [CrossRef]
- Shimada, Y.; Shibata, T.; Yamaguchi, T.; Oda, Y.; Kajiwara, K.; Takahashi, K.; Kasugai, A.; Sakamoto, K.; Komurasaki, K.; Arakawa, Y. Propagating Structure Of A Microwave Driven Shock wave Inside A Tube. AIP Conf. Proc. 2010, 1230, 366. [Google Scholar]
- Shimamura, K.; Ofosu, J.A.; Komurasaki, K.; Koizumi, H. Predicting Propagation Limits of Laser-supported Detonation by Hugoniot Analysis. Jpn. J. Appl. Phys. 2015, 54, 5. [Google Scholar] [CrossRef]
- Raizer, Y.P. Heating of a gas by a powerful light pulse. Sov. Phys. JETP 1965, 21, 1009–1017. [Google Scholar]
- Maher, W.E.; Hall, R.B.; Johnson, R.R. Experimental study of igition and propagation of laser-supported detonation waves. J. Appl. Phys. 1974, 45, 2138–2145. [Google Scholar] [CrossRef]
- Bournot, P.; Pincosy, P.A.; Inglesakis, G.; Autric, M.; Dufresne, D.; Caressa, J.-P. Propagation of a Laser-supported Detonation Wave. Acta Astronaut. 1979, 6, 257–267. [Google Scholar] [CrossRef]
- Bufetov, I.A.; Prokhorov, A.M.; Fedorov, V.B.; Fomin, V.K. Optical Discharge Accompanying a Restriction Imposed on Lateral Expansion of Gas and a Reduction in the Threshold of Light-induced Detonation. JETP Lett. 1984, 39, 258. [Google Scholar]
- Wei, P.S.P.; Hall, R.B.; Maher, W.E. Study of laser-supported detonation waves by time-resolved spectroscopy. J. Chem. Phys. 1973, 59, 3692–3700. [Google Scholar] [CrossRef]
- Matsui, K.; Shimano, T.; Komurasaki, J.A.O.K.; Schoenherr, T.; Koizumi, H. Accurate propagation velocity measurement of laser supported detonation waves. Vacuum 2016, 130, 171–176. [Google Scholar] [CrossRef]
- Shimano, T.; Ofosu, J.A.; Matsui, K.; Komurasaki, K.; Koizumi, H. Laser-Induced Discharge Propagation Velocity in Helium and Argon Gases. Trans. Jpn. Soc. Aero. Space Sci. 2017, 60, 378–381. [Google Scholar] [CrossRef]
- Maeda, S.; Kasahara, J.; Matsuo, A. Oblique detonation wave stability around a spherical projectile by a high time resolution optical observation. Combust. Flame 2012, 159, 887–896. [Google Scholar] [CrossRef]
- Iwata, K.; Nakaya, S.; Tuse, M. Wedge-stabilized oblique detonation in an inhomogeneous hydrogen–air mixture. Proc. Combust. Inst. 2017, 36, 2761. [Google Scholar] [CrossRef]
- ISO 11146; Lasers and Laser-Related Equipment—Test Methods for Laser Beam Widths, Divergence Angles and Beam Propagation Ratios. International Organization for Standardization: Geneva, Switzerland, 2005.
- Shimamura, K.; Yokota, I.; Yokota, S. Characterization of the fast ionization wave induced by a CO2 laser pulse in argon. J. Appl. Phys. 2019, 126, 243304. [Google Scholar] [CrossRef]
Property | r1 | r2 | r1 | r2 | r1 | r2 |
---|---|---|---|---|---|---|
f [mm] | 500 | 400 | 317.5 | 127 | ||
F | 16.7 | 13.3 | 10.6 | 4.2 | ||
[mm] | 1.7 | 1.1 | 0.4 | |||
[mm] | 2.0 | 1.6 | 0.6 | |||
D [mm] | 4.1 | 2.9 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsui, K.; Komurasaki, K.; Kanda, K.; Koizumi, H. Observation of Oblique Laser-Supported Detonation Wave Propagating in Atmospheric Air. Aerospace 2024, 11, 327. https://doi.org/10.3390/aerospace11040327
Matsui K, Komurasaki K, Kanda K, Koizumi H. Observation of Oblique Laser-Supported Detonation Wave Propagating in Atmospheric Air. Aerospace. 2024; 11(4):327. https://doi.org/10.3390/aerospace11040327
Chicago/Turabian StyleMatsui, Kohei, Kimiya Komurasaki, Keisuke Kanda, and Hiroyuki Koizumi. 2024. "Observation of Oblique Laser-Supported Detonation Wave Propagating in Atmospheric Air" Aerospace 11, no. 4: 327. https://doi.org/10.3390/aerospace11040327
APA StyleMatsui, K., Komurasaki, K., Kanda, K., & Koizumi, H. (2024). Observation of Oblique Laser-Supported Detonation Wave Propagating in Atmospheric Air. Aerospace, 11(4), 327. https://doi.org/10.3390/aerospace11040327