A Study of Lunar Regolith Obtained during the Apollo and Luna Space Programs Based on Principal Component Analysis
Abstract
:1. Introduction
2. Available Data
3. Methodology
4. Results and Discussion
5. Conclusions
- The PCA technique enables the swift and reliable categorization of soil samples obtained from both mare and highland areas of the lunar surface.
- The calculation method used allows for the identification of chemical factors that may contribute to the grouping of objects within clusters depicted on PCA graphs.
- In terms of chemical composition, the samples obtained by the American Apollo missions appear to be very similar to those obtained by the Soviet Luna missions; the reliability of the Apollo and Luna datasets is, therefore, confirmed.
- The analysis reveals close similarities in the chemical compositions of samples originating from the same type of land, i.e., highlands or mares.
- The PCA method may be applied to distinguish the types of rocks contained in tested samples of lunar regolith.
- The creation of a new type of LSS (dedicated for civil engineering applications) is enabled.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Seweryn, K.; Skocki, K.; Banaszkiewicz, M.; Grygorczuk, J.; Kolano, M.; Kuciński, T.; Mazurek, J.; Morawski, M.; Białek, A.; Rickman, H.; et al. Determining the Geotechnical Properties of Planetary Regolith Using Low Velocity Penetrometers. Planet. Space Sci. 2014, 99, 70–83. [Google Scholar] [CrossRef]
- Pearson, K. LIII. On Lines and Planes of Closest Fit to Systems of Points in Space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a Complex of Statistical Variables into Principal Components. J. Educ. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
- Hotelling, H. Relations Between Two Sets of Variates. Biometrika 1936, 28, 321. [Google Scholar] [CrossRef]
- Ghosh, A.; Barman, S. Application of Euclidean Distance Measurement and Principal Component Analysis for Gene Identification. Gene 2016, 583, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Argota-Perez, R.; Robbins, J.; Green, A.; Herk, M.V.; Korreman, S.; Vásquez-Osorio, E. Evaluating Principal Component Analysis Models for Representing Anatomical Changes in Head and Neck Radiotherapy. Phys. Imaging Radiat. Oncol. 2022, 22, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Kobaka, J. Principal Component Analysis as a Statistical Tool for Concrete Mix Design. Materials 2021, 14, 2668. [Google Scholar] [CrossRef] [PubMed]
- Zarzycki, P.K.; Katzer, J.; Domski, J. Fast Classification of Fibres for Concretebased on Multivariate Statistics. Comput. Concr. 2017, 20, 23–29. [Google Scholar] [CrossRef]
- Kobaka, J.; Katzer, J.; Zarzycki, P.K. Pilbara Craton Soil as a Possible Lunar Soil Simulant for Civil Engineering Applications. Materials 2019, 12, 3871. [Google Scholar] [PubMed]
- Zarzycki, P.K.; Katzer, J. Assessment of Lunar Soil Simulants Based on Multivariate Statistics. In Proceedings of the Earth and Space 2018: Engineering for Extreme Environments, Cleveland, OH, USA, 9–12 April 2018. [Google Scholar] [CrossRef]
- Hill, E.; Mellin, M.J.; Deane, B.; Liu, Y.; Taylor, L.A. Apollo Sample 70051 and High- and Low-Ti Lunar Soil Simulants MLS-1A and JSC-1A: Implications for Future Lunar Exploration. J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef]
- Wang, K.T.; Tang, Q.; Cui, X.M.; He, Y.; Liu, L.P. Development of Near-Zero Water Consumption Cement Materials via the Geopolymerization of Tektites and Its Implication for Lunar Construction. Sci. Rep. 2016, 6, 29659. [Google Scholar] [CrossRef] [PubMed]
- Wallace, W.T.; Taylor, L.A.; Liu, Y.; Cooper, B.L.; McKay, D.S.; Chen, B.; Jeevarajan, A.S. Lunar Dust and Lunar Simulant Activation and Monitoring. Meteorit. Planet. Sci. 2009, 44, 961–970. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, S.; Ouyang, Z.; Zou, Y.; Liu, J.; Li, C.; Li, X.; Feng, J. CAS-1 Lunar Soil Simulant. Adv. Space Res. 2009, 43, 448–454. [Google Scholar] [CrossRef]
- Vinogradov, A.P. Preliminary Data on Lunar Ground Brought to Earth by Automatic Probe “Luna-16”. Lunar Planet. Sci. Conf. Proc. 1971, 2, 1. [Google Scholar]
- Albee, A.L.; Chodos, A.A.; Gancarz, A.J.; Haines, E.L.; Papanastassiou, D.A.; Ray, L.; Tera, F.; Wasserburg, G.J.; Wen, T. Mineralogy, Petrology, and Chemistry of a Luna 16 Basaltic Fragment, Sample B-1. Earth Planet. Sci. Lett. 1972, 13, 353–367. [Google Scholar] [CrossRef]
- Grieve, R.A.F.; McKay, G.A.; Weill, D.F. Microprobe Studies of Three Luna 16 Basalt Fragments. Earth Planet. Sci. Lett. 1972, 13, 233–242. [Google Scholar] [CrossRef]
- Keil, K.; Kurat, G.; Prinz, M.; Green, J.A. Lithic Fragments, Glasses and Chondrules from Luna 16 Fines. Earth Planet. Sci. Lett. 1972, 13, 243–256. [Google Scholar] [CrossRef]
- Cimbalnikova, A.; Palivova, M.; Frana, J.; Mastalka, A. Chemical Composition of Crystalline Rock Fragments from Luna 16 and Luna 20 Fines. In Proceedings of the The Soviet-American Conference on Cosmochemistry of the Moon and Planets, Moscow, Russia, 4–8 June 1977; pp. 263–275. [Google Scholar]
- Kurat, G.; Kracher, A.; Keil, K.; Warner, R.; Prinz, M. Composition and Origin of Luna 16 Aluminous Mare Basalts. Lunar Planet. Sci. Conf. Proc. 1976, 2, 1301–1321. [Google Scholar]
- Korotev, R.L.; Haskin, L.A.; Lindstrom, M.M. A Synthesis of Lunar Highlands Compositional Data. Lunar Planet. Sci. Conf. Proc. 1980, 1, 395–429. [Google Scholar]
- McKay, D.S.; Heiken, G.; Basu, A.; Blanford, G.; Simon, S.; Reedy, R.; French, B.M.; Papike, J. The Lunar Regolith. In Lunar Sourcebook: A Users Guide to the Moon; Al, H., Ed.; Cambridge Unov. Press: Cambridge, UK, 1991. [Google Scholar]
- Philpotts, J.A.; Schumann, S.; Bickel, A.L.; Lum, R.K.L. Luna 20 and Apollo 16 Core Fines: Large-Ion Lithophile Trace-Element Abundances. Earth Planet. Sci. Lett. 1972, 17, 13–18. [Google Scholar] [CrossRef]
- Vinogradov, A.P. Preliminary Data on Lunar Soil Collected by the Luna 20 Unmanned Spacecraft. Geochim. Cosmochim. Acta 1973, 37, 721–729. [Google Scholar] [CrossRef]
- McKay, D.S.; Basu, A.; Waits, G. Grain Size and the Evolution of Luna 24 Soils. In Mare Crisium: The view from Luna 24; Pergamon Press: Oxford, UK, 1978; pp. 125–136. [Google Scholar]
- Barsukov, V.L. Preliminary Data for the Regolith Core Brought to Earth by the Automatic Lunar Station Luna 24. Lunar Planet. Sci. Conf. Proc. 1977, 3, 3303–3318. [Google Scholar]
- Vaniman, D.T.; Papike, J.J. Ferrobasalts from Mare Crisium: Luna 24. Geophys. Res. Lett. 1977, 4, 497–500. [Google Scholar] [CrossRef]
- Taylor, G.J.; Keil, K.; Warner, R.D. Very Low-Ti Mare Basalts. Geophys. Res. Lett. 1977, 4, 207–210. [Google Scholar] [CrossRef]
- Barsukov, V.L.; Tarasov, L.S.; Dmitriev, L.V.; Kolesov, G.M.; Shevaleevskii, I.D.; Garanin, A.V. The Geochemical and Petrochemical Features of Regolith and Rocks from Mare Crisium (Preliminary Data). Lunar Planet. Sci. Conf. Proc. 1977, 3, 3319–3332. [Google Scholar]
- Taylor, L.A.; Onorato, P.I.K.; Uhlman, D.R.; Coish, R.A. Subophitic Basalts from Mare Crisium: Cooling Rates. In Mare Crisium: The view from Luna 24; Pergamon Press: Oxford, UK, 1978; pp. 473–482. [Google Scholar]
- Ryder, G.; Mcsween, H.Y.; Marvin, U.B. Basalts from Mare Crisium. Moon 1977, 17, 263–287. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis, Second Edition. Encycl. Stat. Behav. Sci. 2002, 30, 487. [Google Scholar] [CrossRef]
- Mulaik, S.A. Blurring the Distinctions Between Component Analysis and Common Factor Analysis. Multivar. Behav. Res. 1990, 25, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Korotev, R.L. Lunar Geochemistry as Told by Lunar Meteorites. Chem. Der Erde 2005, 65, 297–346. [Google Scholar] [CrossRef]
- Frank, M. The Lunar and Planetary Science XXXIII Conference. Powder Diffr. 2002, 17, 254. [Google Scholar] [CrossRef]
Mission (Start Date) | Samples Returned (kg) | Route Travelled on the Moon (km) | Type of Flight | Landing Coordinates | Landing Place Description |
---|---|---|---|---|---|
Apollo 11 (16 July 1969) | 21.7 | 0.25 | manned | 0.67408° N 23.47297° E | mare |
Apollo 12 (14 November 1969) | 34.3 | 1.5 | manned | 3.01239° S 23.42157° W | mare |
Apollo 14 (31 January 1971) | 44.8 | 3.3 | manned | 3.64530° S 17.47136° W | highlands/mare |
Apollo 15 (26 July 1971) | 76.8 | 27.9 | manned | 26.1322° N 3.6339° E | mare |
Apollo 16 (16 April 1972) | 95.8 | 27 | manned | 8.97301° S 15.50019° E | highlands |
Apollo 17 (07 December 1972) | 110.0 | 30 | manned | 20.1908° N 30.7717° E | mare |
Luna 16 (12 September 1970) | 0.101 | n/a | unmanned | 0.5137° S 56.3638° E | mare |
Luna 20 (14 February 1972) | 0.030 | n/a | unmanned | 3.5333° N 56.5500° E | highlands |
Luna 24 (9 August 1976) | 0.170 | n/a | unmanned | 12.7145° N 62.2097° E | mare |
No. | SiO2 | TiO2 | Al2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | Mission |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 42.1 | 7.8 | 13.7 | 15.8 | 0.2 | 7.9 | 12 | 0.5 | 0.1 | 0.1 | 11 |
2 | 42.2 | 7.8 | 13.6 | 15.3 | 0.2 | 7.8 | 11.9 | 0.47 | 0.16 | 0.05 | 11 |
3 | 42.6 | 3.6 | 14.2 | 15.4 | 0.22 | 9.7 | 10.4 | 0.43 | 0.24 | - | 12 |
4 | 46 | 2.8 | 12.5 | 17.2 | 0.22 | 9.7 | 10.9 | 0.48 | 0.24 | - | 12 |
5 | 48.2 | 1.73 | 17.6 | 10.41 | 0.14 | 9.26 | 11.25 | 0.61 | 0.51 | 0.53 | 14 |
6 | 47.3 | 1.6 | 17.8 | 10.5 | 0.1 | 9.6 | 11.4 | 0.7 | 0.6 | - | 14 |
7 | 48.1 | 1.7 | 17.4 | 10.4 | 0.14 | 9.4 | 10.7 | 0.7 | 0.55 | 0.51 | 14 |
8 | 46.95 | 1.6 | 12.7 | 16.29 | 0.217 | 10.75 | 10.49 | 0.33 | 0.092 | 0.16 | 15 |
9 | 45.35 | 0.49 | 28.25 | 4.55 | 0.06 | 5.02 | 16.21 | 0.42 | 0.09 | 0.1 | 16 |
10 | 45.2 | 0.58 | 26.4 | 5.29 | 0.7 | 6.1 | 15.32 | 0.52 | 0.14 | 0.12 | 16 |
11 | 44.65 | 0.56 | 27 | 5.49 | 0.7 | 5.84 | 15.95 | 0.44 | 0.13 | 0.1 | 16 |
12 | 44.9 | 0.47 | 27.7 | 5.01 | - | 5.69 | 15.7 | 0.51 | 0.22 | 0.16 | 16 |
13 | 44.77 | 0.37 | 28.99 | 4.35 | 0.07 | 4.2 | 16.85 | 0.44 | 0.06 | 0.05 | 16 |
14 | 45 | 0.54 | 27.3 | 5.1 | 0.3 | 5.7 | 15.7 | 0.46 | 0.17 | 0.11 | 16 |
15 | 41.67 | 6.52 | 13.57 | 15.37 | 0.21 | 10.22 | 11.18 | 0.34 | 0.09 | 0.06 | 17 |
16 | 39.82 | 9.52 | 11.13 | 17.41 | 0.25 | 9.51 | 10.85 | 0.32 | 0.07 | 0.06 | 17 |
17 | 40.09 | 9.32 | 10.7 | 17.85 | 0.24 | 9.92 | 10.59 | 0.36 | 0.08 | 0.07 | 17 |
18 | 42.2 | 5.09 | 15.7 | 12.4 | 0.15 | 10.3 | 11.5 | 0.24 | 0.07 | - | 17 |
No. | SiO2 | TiO2 | Al2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | Mission |
---|---|---|---|---|---|---|---|---|---|---|---|
19 | 41.7 | 3.39 | 15.32 | 16.8 | 0.21 | 8.73 | 12.2 | 0.37 | 0.1 | - | 16 |
20 | 41.2 | 3.46 | 15.4 | 16.55 | 0.2 | 8.82 | 12.8 | 0.36 | 0.12 | - | 16 |
21 | 42.5 | 3.3 | 15.45 | 16.3 | 0.2 | 8.96 | 12.42 | 0.36 | 0.1 | - | 16 |
22 | 41.3 | 3.42 | 15.15 | 16.9 | 0.22 | 8.6 | 12.55 | 0.28 | 0.1 | - | 16 |
23 | 41.93 | 3.36 | 15.33 | 16.66 | 0.2 | 8.78 | 12.53 | 0.34 | 0.1 | 0.12 | 16 |
24 | 43.8 | 4.9 | 13.65 | 19.36 | 0.2 | 7.05 | 10.4 | 0.38 | 0.15 | 0.12 | 16 |
25 | 42.95 | 5.5 | 13.88 | 20.17 | 0.2 | 6.05 | 10.8 | 0.23 | 0.16 | 0.14 | 16 |
26 | 45.5 | 4.04 | 13.95 | 17.77 | 0.26 | 5.95 | 11.96 | 0.63 | 0.21 | 0.15 | 16 |
27 | 45.17 | 2.9 | 16.98 | 13.21 | 0.22 | 4.02 | 13.32 | 0.69 | 0.17 | - | 16 |
28 | 43.36 | 4.37 | 15.13 | 17.48 | 0.27 | 4.97 | 12.77 | 0.7 | 0.17 | - | 16 |
29 | 44.2 | 2.48 | 16.45 | 13.67 | 0.2 | 4.3 | 12.65 | 0.69 | 0.21 | - | 16 |
30 | 46.6 | 6.1 | 15.7 | 17.2 | 0.28 | 3.7 | 11.3 | 0.46 | 0.24 | 0.12 | 16 |
31 | 42.8 | 3.17 | 16.4 | 17.6 | 0.26 | 8.8 | 12.9 | 0.43 | 0.144 | - | 16 |
32 | 35.3 | 3.7 | 8.7 | 25.6 | 0.29 | 5.5 | 9.1 | 0.56 | 0.2 | - | 16 |
33 | 36.8 | 3.8 | 8.8 | 25.7 | 0.28 | 5.6 | 8.7 | 0.66 | - | - | 16 |
34 | 52 | 4.2 | 8.9 | 25.2 | 0.26 | 4.2 | 8.7 | 0.62 | 0.26 | - | 16 |
35 | 44.1 | 4.2 | 9.3 | 23.1 | 0.27 | 4.8 | 9.4 | 0.53 | 0.23 | - | 16 |
36 | - | 3.5 | 9.1 | 22.5 | 0.23 | 10.3 | 12.3 | 0.4 | 0.21 | - | 16 |
37 | 48.1 | 5.3 | 13.1 | 24.2 | 0.28 | 6.3 | 12 | 0.44 | 0.17 | - | 16 |
38 | 46.6 | 4.8 | 13 | 19.9 | 0.32 | 8.6 | 10.4 | 0.4 | 0.19 | - | 16 |
39 | - | 5.3 | 12.2 | 21.6 | 0.27 | 9.5 | 11.6 | 0.46 | - | - | 16 |
40 | 59.1 | 4.8 | 13.6 | 22.7 | 0.29 | 7.8 | 11.9 | 0.46 | 0.17 | - | 16 |
41 | 46 | 4.2 | 9.6 | 17.6 | 0.27 | 7 | 10.5 | 0.53 | 0.18 | - | 16 |
42 | 46.3 | 1.02 | 20.2 | 11.1 | 0.17 | 2.32 | 14.8 | 0.83 | 0.44 | 0.23 | 16 |
43 | 47.3 | 2.03 | 19 | 12.1 | 0.21 | 3.1 | 14.3 | 0.68 | 0.32 | 0.13 | 16 |
44 | 46.3 | 2.16 | 19.3 | 12.9 | 0.2 | 3.8 | 15 | 0.52 | 0.19 | 0.05 | 16 |
45 | 46.7 | 2.48 | 16 | 14.1 | 0.23 | 3.7 | 15.4 | 0.55 | 0.25 | 0.1 | 16 |
46 | 44.6 | 3.5 | 16.5 | 15.3 | 0.23 | 4.6 | 14.3 | 0.39 | 0.18 | 0.02 | 16 |
47 | 43.2 | 4.8 | 14.3 | 16.4 | 0.27 | 4.9 | 13.4 | 0.47 | 0.21 | 0.06 | 16 |
48 | 44.1 | 3.7 | 14.5 | 16.6 | 0.26 | 5.2 | 14.2 | 0.5 | 0.24 | 0.05 | 16 |
49 | 45.6 | 3.5 | 14.2 | 17.3 | 0.25 | 5.2 | 13.3 | 0.34 | 0.24 | 0.11 | 16 |
50 | 43.7 | 4.8 | 12.1 | 18.8 | 0.3 | 6.3 | 12.2 | 0.45 | 0.24 | 0.1 | 16 |
51 | 42.6 | 1.05 | 19.4 | 18.7 | 0.22 | 4.1 | 12.2 | 0.56 | 0.29 | 0.07 | 16 |
52 | 41.3 | 1.93 | 11.5 | 21.6 | 0.28 | 12 | 9.3 | 0.39 | 0.17 | 0.05 | 16 |
53 | 45.6 | 0.46 | 22.9 | 7.5 | 0.106 | 9.15 | 14.5 | 0.4 | 0.069 | - | 20 |
54 | 45.1 | 0.55 | 22.3 | 7 | 0.13 | 9.8 | 15.1 | 0.5 | 0.1 | 0.16 | 20 |
55 | 45.4 | 0.47 | 23.44 | 7.37 | 0.1 | 9.19 | 13.38 | 0.29 | 0.067 | 0.06 | 20 |
56 | 45.8 | 0.533 | 21.6 | 7.02 | 0.13 | 9.85 | 14.9 | 0.46 | 0.1 | 0.17 | 20 |
57 | 44.4 | 0.56 | 22.9 | 7.03 | 0.12 | 9.7 | 15.2 | 0.55 | 0.1 | 0.14 | 20 |
58 | 42.8 | 0.47 | 23.6 | 6.6 | 0.1 | 9.5 | 14.4 | 0.35 | 0.06 | 0.14 | 20 |
59 | 44.2 | 0.52 | 19.1 | 6.91 | 0.12 | 13.37 | 13.3 | 0.48 | 0.47 | 0.17 | 20 |
60 | 43.9 | 1.3 | 12.5 | 19.8 | 0.25 | 9.4 | 12.3 | 0.31 | 0.04 | 0.11 | 24 |
61 | 43.3 | 1.13 | 15.2 | 16.3 | 0.22 | 8.69 | 13.1 | 0.42 | 0.04 | 0.14 | 24 |
62 | 43.5 | 1.09 | 15.5 | 16.2 | 0.21 | 8.87 | 12.9 | 0.51 | 0.04 | 0.13 | 24 |
63 | 43.6 | 1.13 | 15.9 | 16.2 | 0.23 | 8.8 | 13.3 | 0.25 | 0.04 | 0.13 | 24 |
64 | 43.7 | 1.23 | 16 | 16.1 | 0.22 | 8.75 | 13.1 | 0.43 | 0.06 | 0.12 | 24 |
65 | 45.2 | 0.89 | 13.8 | 20.5 | 0.27 | 6.35 | 12.7 | 0.24 | 0.01 | - | 24 |
66 | 48 | 1 | 13.1 | 19.5 | 0.31 | 5.2 | 13.1 | 0.29 | 0.04 | 0.11 | 24 |
67 | 43.9 | 0.74 | 19 | 16.6 | 0.19 | 5.2 | 14 | 0.5 | 0.06 | - | 24 |
68 | 45.5 | 0.96 | 13.9 | 18.4 | 0.24 | 6.3 | 13.3 | 0.37 | 0.02 | 0.02 | 24 |
69 | 45.3 | 1.16 | 12.4 | 20.3 | 0.27 | 7.5 | 12.2 | 0.37 | 0.03 | - | 24 |
70 | 47.3 | 0.37 | 26.8 | 6.99 | 0.11 | 1.03 | 17.1 | 0.66 | 0.04 | - | 24 |
71 | 47.6 | 0.2 | 9.94 | 14.7 | 0.25 | 13 | 12.2 | 0.21 | 0.03 | - | 24 |
72 | 41.1 | 0.58 | 10.4 | 24.9 | 0.38 | 11.6 | 8.64 | 0.29 | 0.02 | - | 24 |
73 | 47.1 | 1.27 | 12.8 | 17.6 | 0.25 | 7.16 | 12.9 | 0.3 | 0.04 | - | 24 |
74 | 44.8 | 0.82 | 11.1 | 21.9 | 0.29 | 10.4 | 9.94 | 0.32 | 0.18 | - | 24 |
75 | 46.9 | 0.8 | 13 | 19.3 | 0.28 | 6.53 | 13.1 | 0.44 | 0.23 | - | 24 |
76 | 46.5 | 0.67 | 13.3 | 17.2 | 0.29 | 7.2 | 13.1 | 0.3 | 0.04 | 0.02 | 24 |
77 | 46.4 | 0.79 | 13.7 | 18.5 | 0.3 | 6.5 | 13.3 | 0.28 | 0.04 | - | 24 |
78 | 46.6 | 0.86 | 12.9 | 17.4 | 0.2 | 6.3 | 13.3 | 0.31 | 0.04 | 0.04 | 24 |
79 | 48.3 | 1.06 | 12 | 18.1 | 0.25 | 6.8 | 12.7 | 0.4 | 0.04 | 0.02 | 24 |
80 | 44.6 | 0.8 | 12.7 | 17.8 | 0.26 | 6.5 | 13.7 | 0.29 | 0.03 | 0 | 24 |
81 | 46.1 | 1.14 | 11.9 | 17.4 | 0.24 | 6.2 | 12.8 | 0.02 | 0.04 | 0.02 | 24 |
82 | 42.8 | 0.3 | 16.4 | 15.3 | 0.24 | 6.2 | 15.3 | 0.41 | 0.06 | 0.01 | 24 |
83 | 43.8 | 0.35 | 12.7 | 20.3 | 0.3 | 8 | 13.5 | 0.36 | 0.05 | 0.02 | 24 |
84 | 44.3 | 0.09 | 11.6 | 20.5 | 0.3 | 7.6 | 12.7 | 0.36 | 0.04 | 0.05 | 24 |
85 | 46 | 0.84 | 15.8 | 15.5 | 0.15 | 5.8 | 13.9 | 0.3 | 0.03 | 0.04 | 24 |
86 | 46.4 | 0.28 | 15.8 | 16.3 | 0.17 | 5.8 | 13.9 | 0.34 | 0.03 | - | 24 |
87 | 47.8 | 0.31 | 14.8 | 15.8 | 0.25 | 5.9 | 13.9 | 0.32 | 0.03 | 0.03 | 24 |
88 | 45.4 | 0.66 | 8.9 | 19.2 | 0.37 | 15.4 | 8.9 | 0.2 | 0.05 | - | 24 |
89 | 43.1 | 0.15 | 6.9 | 20.1 | 0.25 | 20.8 | 6.9 | 0.12 | 0.03 | - | 24 |
90 | 44.2 | 0.62 | 7.7 | 21.6 | 0.43 | 18.2 | 7 | 0.15 | 0.05 | 0.03 | 24 |
Variable Designation | Chemical Assignment | Contribution of the Variable [%] | ||
---|---|---|---|---|
F1 | F2 | F3 | ||
1 | SiO2 | 2.42 | 0.02 | 0.24 |
2 | TiO2 | 2.99 | 14.06 | 8.69 |
3 | Al2O3 | 23.51 | 3.61 | 0.53 |
4 | FeO | 20.96 | 2.44 | 7.81 |
5 | MnO | 3.68 | 0.76 | 8.2 |
6 | MgO | 7.85 | 0.04 | 48.41 |
7 | CaO | 18.61 | 10.9 | 3.56 |
8 | Na2O | 10.31 | 16.86 | 7.36 |
9 | K2O | 4.19 | 31.34 | 0.33 |
10 | P2O5 | 5.48 | 19.97 | 14.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katzer, J.; Kobaka, J.; Seweryn, K. A Study of Lunar Regolith Obtained during the Apollo and Luna Space Programs Based on Principal Component Analysis. Aerospace 2024, 11, 348. https://doi.org/10.3390/aerospace11050348
Katzer J, Kobaka J, Seweryn K. A Study of Lunar Regolith Obtained during the Apollo and Luna Space Programs Based on Principal Component Analysis. Aerospace. 2024; 11(5):348. https://doi.org/10.3390/aerospace11050348
Chicago/Turabian StyleKatzer, Jacek, Janusz Kobaka, and Karol Seweryn. 2024. "A Study of Lunar Regolith Obtained during the Apollo and Luna Space Programs Based on Principal Component Analysis" Aerospace 11, no. 5: 348. https://doi.org/10.3390/aerospace11050348
APA StyleKatzer, J., Kobaka, J., & Seweryn, K. (2024). A Study of Lunar Regolith Obtained during the Apollo and Luna Space Programs Based on Principal Component Analysis. Aerospace, 11(5), 348. https://doi.org/10.3390/aerospace11050348