Dense Feature Matching for Hazard Detection and Avoidance Using Machine Learning in Complex Unstructured Scenarios
Abstract
:1. Introduction
- Demonstrating that ML-based feature detectors and matchers can produce denser and more accurate feature maps in unstructured environments with complex light conditions.
- Estimations of geometrical features such as slopes for safe landing are more accurate using these methods.
- Proof of concept running on embedded hardware.
2. Background
2.1. Lunar Light Plains
2.2. Traditional Feature Matching
2.3. Machine Learning Feature Detection and Matching
2.3.1. Learning-Based Feature Detection
2.3.2. Learning-Based Feature Matching
2.4. Hazard-Detection and Avoidance
3. Methodology
3.1. Simulation Environment
3.2. Spacecraft and Camera
3.3. HDA, SfM, and Slope Estimation
3.4. Learning-Based Methods Configuration
4. Results and Discussion
4.1. Feature Matching Example—ORB and SIFT
4.2. Feature Matching Testing on a Desktop Computer
4.3. Jetson TX2 Results
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ORB | Oriented FAST and Rotated BRIEF |
SIFT | Scale-Invariant Feature Transform |
ML | Machine Learning |
ALIKED | Affine-Local Invariant Keypoint-based Extractor and Descriptor |
DISK | DIScrete Keypoints |
SfM | Structure-from-Motion |
LiDAR | Light Detection And Ranging |
TRN | Terrain Relative Navigation |
CLPS | Commercial Lunar Payload Services |
SLAM | Simultaneous Localization and Mapping |
HDA | Hazard Detection and Avoidance |
GNC | Guidance, Navigation, and Control |
DEM | Digital Elevation Maps |
DLT | Direct Linear Transform |
ONNX | Open Neural Network Exchange |
References
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 2564–2571. [Google Scholar]
- Hapke, B.; Nelson, R.; Smythe, W. The opposition effect of the moon: Coherent backscatterandshadow hiding. Icarus 1998, 133, 89–97. [Google Scholar] [CrossRef]
- Meyer, C.H.; Robinson, M.; Denevi, B.; Boyd, A. A new global map of light plains from the Lunar Reconnaissance Orbiter. In Proceedings of the 49th Lunar and Planetary Science Conference, Woodlands, TX, USA, 19–23 March 2018; Lunar and Planetary Institute: Houston, TX, USA, 2018. Available online: https://www.hou.usra.edu/meetings/lpsc2018/pdf/1474.pdf (accessed on 10 January 2024).
- Meyer, H.M.; Denevi, B.W.; Robinson, M.S.; Boyd, A.K. The Global Distribution of Lunar Light Plains From the Lunar Reconnaissance Orbiter Camera. J. Geophys. Res. Planets 2020, 125, e2019JE006073. [Google Scholar] [CrossRef]
- NASA/ASU/ACT. 2023. Lunar QuickMap. Available online: https://quickmap.lroc.asu.edu/help?extent=-90%2C-26.8649195%2C90%2C33.7123568&id=lroc&layerListFilter=&showTerrain=true&queryOpts=N4XyA&trailType=0&layers=NrBsFYBoAZIRnpEBmZcAsjYIHYFcAbAyAbwF8BdC0ypZaOAThkQRXWUwW0nyJqoCKQA&proj=10 (accessed on 2 February 2024).
- Posada, D.; Jordan, J.; Radulovic, A.; Hong, L.; Malik, A.; Henderson, T. Detection and Initial Assesment of Lunar Landing Sites Using Neural Networks. In Proceedings of the 2022 AAS/AIAA Astrodynamics Specialist Conference, Charlotte, NC, USA, 7–11 August 2022. [Google Scholar]
- Cheng, Y.; Ansar, A.; Johnson, A. Making an onboard reference map From MRO/CTX imagery for Mars 2020 lander vision system. Earth Space Sci. 2021, 8, e2020EA001560. [Google Scholar] [CrossRef]
- Tyszkiewicz, M.; Fua, P.; Trulls, E. DISK: Learning local features with policy gradient. Adv. Neural Inf. Process. Syst. 2020, 33, 14254–14265. [Google Scholar]
- Lindenberger, P.; Sarlin, P.E.; Pollefeys, M. LightGlue: Local Feature Matching at Light Speed. arXiv 2023, arXiv:2306.13643. [Google Scholar]
- Lawrence, S.; Robinson, M.; Broxton, M.; Stopar, J.; Close, W.; Grunsfeld, J.; Ingram, R.; Jefferson, L.; Locke, S.; Mitchell, R.; et al. The Apollo digital image archive: New research and data products. In Proceedings of the NLSI Lunar Science Conference, Moffett Field, CA, USA, 20–23 July 2008; Volume 2066. [Google Scholar]
- DeTone, D.; Malisiewicz, T.; Rabinovich, A. Superpoint: Self-supervised interest point detection and description. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 224–236. [Google Scholar]
- Zhao, X.; Wu, X.; Chen, W.; Chen, P.C.; Xu, Q.; Li, Z. ALIKED: A Lighter Keypoint and Descriptor Extraction Network via Deformable Transformation. IEEE Trans. Instrum. Meas. 2023, 72, 5014016. [Google Scholar] [CrossRef]
- Sarlin, P.E.; DeTone, D.; Malisiewicz, T.; Rabinovich, A. Superglue: Learning feature matching with graph neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4938–4947. [Google Scholar]
- Johnson, A.E.; Klumpp, A.R.; Collier, J.B.; Wolf, A.A. Lidar-based hazard avoidance for safe landing on Mars. J. Guid. Control Dyn. 2002, 25, 1091–1099. [Google Scholar] [CrossRef]
- Restrepo, C.I.; Chen, P.T.; Sostaric, R.R.; Carson, J.M. Next-generation nasa hazard detection system development. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; p. 0368. [Google Scholar]
- Brady, T.; Bailey, E.; Crain, T.; Paschall, S. ALHAT system validation. In Proceedings of the 8th International ESA Conference on Guidance, Navigation and Control Systems, Loutraki, Greece, 5 June 2011; p. JSC-CN-23833. [Google Scholar]
- Amzajerdian, F.; Pierrottet, D.; Petway, L.B.; Hines, G.D.; Roback, V.E.; Reisse, R.A. Lidar sensors for autonomous landing and hazard avoidance. In Proceedings of the AIAA Space 2013 Conference and Exposition, San Diego, CA, USA, 10–12 September 2013; p. 5312. [Google Scholar]
- Cummings, C. Impact Story: Navigation Doppler LIDAR. News, 24 April 2023. Available online: https://www.psionicnav.com/news/impact-story-navigation-doppler-lidar (accessed on 15 January 2024).
- Schonberger, J.L.; Frahm, J.M. Structure-from-motion revisited. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113. [Google Scholar]
- Campos, C.; Elvira, R.; Gómez, J.J.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Dusmanu, M.; Rocco, I.; Pajdla, T.; Pollefeys, M.; Sivic, J.; Torii, A.; Sattler, T. D2-net: A trainable cnn for joint description and detection of local features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8092–8101. [Google Scholar]
- Epp, C.D.; Smith, T.B. Autonomous precision landing and hazard detection and avoidance technology (ALHAT). In Proceedings of the 2007 IEEE Aerospace Conference, New Orleans, LA, USA, 23–27 September 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1–7. [Google Scholar]
- Crane, E.S. Vision-Based Hazard Estimation during Autonomous Lunar Landing. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2014. [Google Scholar]
- Yu, M.; Cui, H.; Tian, Y. A new approach based on crater detection and matching for visual navigation in planetary landing. Adv. Space Res. 2014, 53, 1810–1821. [Google Scholar] [CrossRef]
- Jiang, X.; Li, S.; Tao, T. Innovative hazard detection and avoidance strategy for autonomous safe planetary landing. Acta Astronaut. 2016, 126, 66–76. [Google Scholar] [CrossRef]
- Iiyama, K.; Tomita, K.; Jagatia, B.A.; Nakagawa, T.; Ho, K. Deep reinforcement learning for safe landing site selection with concurrent consideration of divert maneuvers. arXiv 2021, arXiv:2102.12432. [Google Scholar]
- Ghilardi, L.; Furfaro, R. Image-Based Lunar Hazard Detection in Low Illumination Simulated Conditions via Vision Transformers. Sensors 2023, 23, 7844. [Google Scholar] [CrossRef] [PubMed]
- Villalpando, C.Y.; Johnson, A.E.; Some, R.; Oberlin, J.; Goldberg, S. Investigation of the tilera processor for real time hazard detection and avoidance on the altair lunar lander. In Proceedings of the 2010 IEEE Aerospace Conference, Big Sky, MN, USA, 6–13 March 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–9. [Google Scholar]
- Johnson, A.E.; Keim, J.A.; Ivanov, T. Analysis of flash lidar field test data for safe lunar landing. In Proceedings of the 2010 IEEE Aerospace Conference, Big Sky, MN, USA, 6–13 March 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–11. [Google Scholar]
- Aaron, S.B.; Cheng, Y.; Trawny, N.; Mohan, S.; Montgomery, J.; Ansari, H.; Smith, K.; Johnson, A.E.; Goguen, J.; Zheng, J. Camera Simulation For Perseverance Rover’s Lander Vision System. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 0746. [Google Scholar]
- Nelson, J.D.; Schaub, H. Landing Site Selection Using a Geometrically Conforming Footprint on Hazardous Small Bodies. J. Spacecr. Rocket. 2021, 59, 889–899. [Google Scholar] [CrossRef]
- Posada, D. An Open Source, Autonomous, Vision-Based Algorithm for Hazard Detection and Avoidance for Celestial Body Landing. Master’s Thesis, Embry–Riddle Aeronautical University, Daytona Beach, FL, USA, 2020. [Google Scholar]
- Getchius, J.; Renshaw, D.; Posada, D.; Henderson, T.; Ge, S.; Molina, G. Hazard Detection And Avoidance For The Nova-C Lander. In Proceedings of the 44th Annual American Astronautical Society Guidance, Navigation, and Control Conference, Breckenridge, CO, USA, 4–9 February 2022. [Google Scholar]
- Owens, C.; Macdonald, K.; Hardy, J.; Lindsay, R.; Redfield, M.; Bloom, M.; Bailey, E.; Cheng, Y.; Clouse, D.; Villalpando, C.Y.; et al. Development of a signature-based terrain relative navigation system for precision landing. In Proceedings of the AIAA Scitech 2021 Forum, Orlando, FL, USA, 11 January 2021; p. 0376. [Google Scholar]
- Moghe, R.; Zanetti, R. A Deep learning approach to Hazard detection for Autonomous Lunar landing. J. Astronaut. Sci. 2020, 67, 1811–1830. [Google Scholar] [CrossRef]
- Roback, V.; Bulyshev, A.; Amzajerdian, F.; Reisse, R. Helicopter flight test of 3D imaging flash LIDAR technology for safe, autonomous, and precise planetary landing. In Proceedings of the Laser Radar Technology and Applications XVIII. International Society for Optics and Photonics, Bellingham, WA, USA, 4 June 2013; Volume 8731, p. 87310H. [Google Scholar]
- Vondrak, R.; Keller, J.; Chin, G.; Garvin, J. Lunar Reconnaissance Orbiter (LRO): Observations for lunar exploration and science. Space Sci. Rev. 2010, 150, 7–22. [Google Scholar] [CrossRef]
- Barker, M.K.; Mazarico, E.; Neumann, G.A.; Smith, D.E.; Zuber, M.T.; Head, J.W. Improved LOLA elevation maps for south pole landing sites: Error estimates and their impact on illumination conditions. Planet. Space Sci. 2021, 203, 105119. [Google Scholar] [CrossRef]
- Mazarico, E.; Neumann, G.; Smith, D.; Zuber, M.; Torrence, M. Illumination conditions of the lunar polar regions using LOLA topography. Icarus 2011, 211, 1066–1081. [Google Scholar] [CrossRef]
- Posada, D.; Jordan, J.; Radulovic, A.; Hong, L.; Malik, A.; Henderson, T. Detection and Initial Assessment of Lunar Landing Sites Using Neural Networks. arXiv 2022, arXiv:2207.11413. [Google Scholar]
- MSC/TRW A-50. In Apollo Mission 11, Trajectory Reconstruction and Postflight Analysis; NASA: Washington, DC, USA, 1970; Volume 1.
- Bradski, G. The OpenCV Library. Dr. Dobb’S J. Softw. Tools 2000, 25, 120–123. [Google Scholar]
- Henry, S.; Christian, J.A. Absolute triangulation algorithms for space exploration. J. Guid. Control. Dyn. 2023, 46, 21–46. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 1–40. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part V 13. Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar]
- Pautrat, R. GitHub SuperPoint. 2018. Available online: https://github.com/rpautrat/SuperPoint (accessed on 24 April 2024).
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Li, Z.; Snavely, N. Megadepth: Learning single-view depth prediction from internet photos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2041–2050. [Google Scholar]
- Shiaoming. GitHub ALIKED. 2022. Available online: https://github.com/Shiaoming/ALIKED (accessed on 24 April 2024).
- CVLAB-EPFL. GitHub Disk. 2020. Available online: https://github.com/cvlab-epfl/disk (accessed on 24 April 2024).
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- CVG-ETH. GitHub LightGlue. 2023. Available online: https://github.com/cvg/LightGlue (accessed on 24 April 2024).
- Sim, F. GitHub LightGlue ONNX. 2023. Available online: https://github.com/fabio-sim/LightGlue-ONNX (accessed on 24 April 2024).
- Eleffendi, M.; Posada, D.; Akbas, M.I.; Henderson, T. NASA/GSFC’s Flight Software Core Flight System Implementation For A Lunar Surface Imaging Mission. arXiv 2022, arXiv:2204.07015. [Google Scholar]
Parameter | Value |
---|---|
Focal Length | 16.2 mm |
Sensor Size | 4.51 mm |
Image Width | 2048 px |
Image Height | 2048 px |
Pipeline | Resolution (Pixels) | Number of Matches | Slope (Degrees) |
---|---|---|---|
ORB | 2048 × 2048 | 100 | 0.05 |
Superpoint | 2048 × 2048 | 79 | 2.1 |
ALIKED | 2048 × 2048 | 88 | 5.56 |
DISK | 2048 × 2048 | 3291 | 0.03 |
Pipeline | Resolution (Pixels) | Number of Matches | Slope (Degrees) | ≈Time (Seconds) |
---|---|---|---|---|
Superpoint + LightGlue | 256 × 256 | 1 | - * | 0.86 |
512 × 512 | 23 | 6.51 | 2.99 | |
1024 × 1024 | 127 | 0.91 | 12.41 | |
DISK + LightGlue | 256 × 256 | 513 | 0.91 | 7.42 |
512 × 512 | 2220 | 0.063 | 35.85 | |
1024 × 1024 | 8322 | 0.033 | 1494.46 |
Pipeline | Resolution (Pixels) | Number of Matches | Slope (Degrees) |
---|---|---|---|
DISK + LightGlue | 256 × 256 | 437 | 3.86 |
512 × 512 | 2227 | 2.322 |
Pipeline | Resolution (Pixels) | Number of Matches | Slope (Degrees) |
---|---|---|---|
DISK+ LightGlue | 256 × 256 | 513 | 0.297 |
256 × 256 | 623 | 0.231 | |
256 × 256 | 570 | 3.221 | |
256 × 256 | 488 | 0.292 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Posada, D.; Henderson, T. Dense Feature Matching for Hazard Detection and Avoidance Using Machine Learning in Complex Unstructured Scenarios. Aerospace 2024, 11, 351. https://doi.org/10.3390/aerospace11050351
Posada D, Henderson T. Dense Feature Matching for Hazard Detection and Avoidance Using Machine Learning in Complex Unstructured Scenarios. Aerospace. 2024; 11(5):351. https://doi.org/10.3390/aerospace11050351
Chicago/Turabian StylePosada, Daniel, and Troy Henderson. 2024. "Dense Feature Matching for Hazard Detection and Avoidance Using Machine Learning in Complex Unstructured Scenarios" Aerospace 11, no. 5: 351. https://doi.org/10.3390/aerospace11050351
APA StylePosada, D., & Henderson, T. (2024). Dense Feature Matching for Hazard Detection and Avoidance Using Machine Learning in Complex Unstructured Scenarios. Aerospace, 11(5), 351. https://doi.org/10.3390/aerospace11050351