Analysis of Wind Field Response Characteristics of Tethered Balloon Systems
Abstract
:1. Introduction
2. Dynamic Model
2.1. Balloon Dynamics Analysis
2.2. Cable Dynamics Analysis
2.3. Dynamical Modeling of Tethered Balloon Systems
3. Results and Discussion
3.1. System Swing Analysis
3.2. Analysis of System Wind Field Response
3.2.1. Wind Speed Amplitude Analysis
3.2.2. Analysis of the Rate of Change in Wind Speed
3.2.3. Ascending Airflow Analysis
3.2.4. Descending Airflow Analysis
4. Conclusions
- In a horizontal step wind field, the larger the maximum wind speed, the higher the cable tension, the higher the cable inclination, the faster the wind speed changes, and the longer the time required for the system to stabilize.
- When the tethered balloon system is in an updraft, the balloon shows a low head phenomenon and the tether is tilted towards the head direction, and the tension of the cable will increase dramatically, with the maximum value increasing by 100.48% compared with that in a horizontal wind field, which greatly increases the risk of the balloon escaping.
- When the tethered balloon system is in descending airflow, the balloon shows the phenomenon of lifting, and the cable is also tilted to the direction of the balloon head. The tension of the cable is reduced to 63.3% of the horizontal wind field, but the height of the balloon is only 75.3% of the horizontal wind field, so the system’s chances of touching the ground are increased.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrero, L.; Ritter, C.; Cappelletti, D.; Moroni, B.; Močnik, G.; Mazzola, M.; Lupi, A.; Becagli, S.; Traversi, R.; Cataldi, M.; et al. Aerosol Optical Properties in the Arctic: The Role of Aerosol Chemistry and Dust Composition in a Closure Experiment between Lidar and Tethered Balloon Vertical Profiles. Sci. Total Environ. 2019, 686, 452–467. [Google Scholar] [CrossRef]
- Guan, X.; Zhang, N.; Tian, P.; Tang, C.; Zhang, Z.; Wang, L.; Zhang, Y.; Zhang, M.; Guo, Y.; Du, T.; et al. Wintertime Vertical Distribution of Black Carbon and Single Scattering Albedo in a Semi-Arid Region Derived from Tethered Balloon Observations. Sci. Total Environ. 2022, 807, 150790. [Google Scholar] [CrossRef] [PubMed]
- Sikand, M.; Koskulics, J.; Stamnes, K.; Hamre, B.; Stamnes, J.J.; Lawson, R.P. Mixed Phase Boundary Layer Clouds Observed from a Tethered Balloon Platform in the Arctic. Proc. AIP Conf. Proc. 2013, 1531, 540–543. [Google Scholar]
- Kai, K.; Kawai, K.; Ohara, K.; Minamoto, Y.; Jin, Y.; Maki, T.; Noda, J.; Shiina, T.; Davaanyam, E. Mass-Extinction Conversion Factor (MECF) over the Gobi Desert by a Tethered-Balloon-Based OPC and a Ceilometer. SOLA 2023, 19, 269–273. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Gupta, S.K.; Rajput, N.S. Performance Evaluation of Broadband Service Delivery via Tethered Balloon Technology. In Proceedings of the 2016 11th International Conference on Industrial and Information Systems (ICIIS), Roorkee, India, 3–4 December 2016; pp. 133–138. [Google Scholar]
- Wei, Z.; Bao, Z.; Zhang, Y. The Application and Development of Tethered Cables. Opt. Fiber Electr. Cable Their Appl. 2013, 6, 1–3. [Google Scholar]
- Qi, J.; Xiaodong, L.; Fantao, M.; Na, L. The Design and Performance Analysis of VLF Tethered Balloon Cable Antenna. Chin. J. Radio Sci. 2021, 36, 775–780. [Google Scholar]
- Wang, Y.; Jia, Y.; Chen, Z.; Han, Y.; Yang, C. Static and Dynamic Simulation of Tethered Airship. Spacecr. Recovery Remote Sens. 2012, 33, 93–99. [Google Scholar]
- Hong-quan, L.; Lei, W. Dynamic Simulation Analysis of Wind-Resistant Performance for a Tethered Balloon. J. Astronaut. Metrol. Meas. 2014, 34, 29. [Google Scholar]
- Costello, H.M.; Kuo, K.A.; Hunt, H.E.M. Stability Analysis of an Aerodynamically Shaped High-Altitude-Balloon Tether. In Proceedings of the International Conference on Noise and Vibration Engineering, Leuven, Belgium, 17–19 September 2012; pp. 3003–3012. [Google Scholar]
- Jang, Y.; Zhang, T.; Qu, Z. Influence of Tail Configuration on Aerodynamic Characteristics of Small Tethered Balloon. Comput. Simul. 2022, 39, 28–34. [Google Scholar]
- Badesha, S.; Bunn, J. Dynamic Simulation of High Altitude Tethered Balloon System Subject to Thunderstorm Windfield. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, Monterey, CA, USA, 5 August 2002; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2002. [Google Scholar]
- Mukherjee, D.; Sharma, I.; Gupta, S.S. Dynamics and Stability of Variable-Length, Vertically-Traveling, Heavy Cables: Application to Tethered Aerostats. J. Aircr. 2019, 56, 68–84. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, T.; Cui, Y.; Chen, C.; Wang, S. Sensitivity Analysis of Aerodynamic Parameters of Stratospheric Tethered Balloon. Acta Aeronaut. Astronaut. Sin. 2022, 43, 176–185. [Google Scholar]
- Aglietti, G.S. Dynamic Response of a High Altitude Tethered Balloon System. J. Aircr. 2009, 46, 2032–2040. [Google Scholar] [CrossRef]
- Pastor-Rodríguez, A.; Sánchez-Arriaga, G.; Sanjurjo-Rivo, M. Modeling and Stability Analysis of Tethered Kites at High Altitudes. J. Guid. Control Dyn. 2017, 40, 1892–1901. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Cai, R. Dynamics Simulation of a Folding Wing Unmanned Aerial Vehicle with the Parachute System Assisted Launching. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2023, 237, 1351–1368. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Cai, R.; Zhao, R. Numerical Simulation of the Dynamic Launching Process for High-Altitude Balloons. Adv. Space Res. 2021, 68, 3677–3699. [Google Scholar] [CrossRef]
- Tuckerman, L. Inertia Factors of Ellipsoids for Use in Airship Design; US Government Printing Office: Washington, DC, USA, 1925.
- Williams, P.; Sgarioto, D.; Trivailo, P. Optimal Control of an Aircraft-Towed Flexible Cable System. J. Guid. Control Dyn. 2006, 29, 401–410. [Google Scholar] [CrossRef]
−0.01738 | −0.02959 | 7.619 × 10−3 | |
0.02925 | 3.02 × 10−4 | −4.99 × 10−3 | |
4.082 × 10−5 | 1.169 × 10−4 | −2.246 × 10−5 | |
−2.148 × 10−6 | 1.041 × 10−7 | −3.623 × 10−7 | |
−2.507 × 10−9 | −7.532 × 10−9 | 8.454 × 10−10 | |
5.951 × 10−11 | −4.566 × 10−12 | 1.641 × 10−11 | |
3.765 × 10−14 | 1.236 × 10−13 | ||
−6.211 × 10−16 |
MAE | RMSE | |
---|---|---|
0.0417 | 0.0533 | |
0.0532 | 0.1119 | |
0.0527 | 0.0799 |
Parameters | Values | Parameters | Values |
---|---|---|---|
9.4 m3 | −1.085 m | ||
5.6 m | 1.12 m | ||
5.614 kg | 1.204 kg/m3 | ||
−0.613 m | 0.229 kg/m3 | ||
−0.367 m | 5.9 g/m | ||
0 m | 3 mm | ||
0 m | 100 Gpa |
Parameters | Values | Parameters | Values |
---|---|---|---|
2439 m3 | 1.956 m | ||
36 m | 12.22 m | ||
643.4 kg | 1.112 kg/m3 | ||
−2.754 m | 0.229 kg/m3 | ||
−3.08 m | 95 g/m | ||
0.4 m | 10.5 mm | ||
0.973 m | 100 Gpa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, C.; He, Z.; Song, K.; Cao, S. Analysis of Wind Field Response Characteristics of Tethered Balloon Systems. Aerospace 2024, 11, 360. https://doi.org/10.3390/aerospace11050360
Pang C, He Z, Song K, Cao S. Analysis of Wind Field Response Characteristics of Tethered Balloon Systems. Aerospace. 2024; 11(5):360. https://doi.org/10.3390/aerospace11050360
Chicago/Turabian StylePang, Ce, Zeqing He, Kaiyin Song, and Shenghong Cao. 2024. "Analysis of Wind Field Response Characteristics of Tethered Balloon Systems" Aerospace 11, no. 5: 360. https://doi.org/10.3390/aerospace11050360
APA StylePang, C., He, Z., Song, K., & Cao, S. (2024). Analysis of Wind Field Response Characteristics of Tethered Balloon Systems. Aerospace, 11(5), 360. https://doi.org/10.3390/aerospace11050360