Temperature Prediction of Icy Lunar Soil Sampling Based on the Discrete Element Method
Abstract
:1. Introduction
2. Simulation Model
2.1. Design for Sampling
2.2. DEM Simulation Model and Test Equipment
2.3. Simulation Condition Settings and Thermal Simulation Verification
3. Temperature Prediction with Different Thermodynamic Parameters
3.1. Simulation Parameter Classification and Impact Analysis
3.2. Four Factors Combine to Influence the Design of the Simulation Experiments
4. Results Analysis
4.1. The Temperature Rise of the Drilling Simulation
4.2. Single-Factor Impact Analysis
4.3. Two-Factor Impact Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anand, M. Lunar Water: A Brief Review. Earth Moon Planets 2010, 107, 65–73. [Google Scholar] [CrossRef]
- Du, Y.; Sheng, L.; Zhang, H.; Ma, J.L.; Zhang, H.; Li, F.; Wu, K. Analysis of the occurrence mode of water ice on the moon and the prospect of in-situ lunar exploration. Spacecr. Environ. Eng. 2019, 36, 8. [Google Scholar]
- Wu, W.; Yu, D.; Wang, C.; Liu, J.; Tang, Y.; Zhang, H.; Zou, Y.; Ma, J.; Zhou, G.; Zhang, Z.; et al. Research on the Main Scientific and Technological Issues on Lunar Polar Exploration. J. Deep Space Explor. 2020, 7, 223–231+240. [Google Scholar]
- Vasavada, R.; Paige, D.A.; Wood, S.E. Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus 1999, 141, 179–193. [Google Scholar] [CrossRef]
- Nozette, S.; Spudis, P.D.; Robinson, M.S.; Bussey, D.B.J.; Lichtenberg, C.; Bonner, R. Integration of Lunar polar remote-sensing data sets: Evidence for ice at the Lunar south pole. J. Geophys. Res. Planets 2001, 106, 23253–23266. [Google Scholar] [CrossRef]
- Thomson, B.J.; Bussey, D.B.J.; Neish, C.D.; Cahill, J.T.S.; Heggy, E.; Kirk, R.L.; Patterson, G.W.; Raney, R.K.; Spudis, P.D.; Thompson, T.W.; et al. An upper limit for ice in Shackleton crater as revealed by LRO Mini-RF orbital radar. Geophys. Res. Lett. 2012, 39, L14201. [Google Scholar] [CrossRef]
- Honniball, C.I.; Lucey, P.G.; Li, S.; Shenoy, S.; Orlando, T.M.; Hibbitts, C.A.; Hurley, D.M.; Farrell, W.M. Molecular water on the illuminated lunar surface: Detection of the 6 µm H-O-H fundamental with the SOFIA airborne observatory. In Proceedings of the 51st Lunar and Planetary Science Conference, The Woodlands, TX, USA, 16–20 March 2020. [Google Scholar]
- Colaprete, A.; Schultz, P.; Heldmann, J.; Wooden, D.; Shirley, M.; Ennico, K.; Hermalyn, B.; Marshall, W.; Ricco, A.; Elphic, R.C.; et al. Detection of water in the LCROSS ejecta plume. Science 2010, 330, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Haruyama, J.; Ohtake, M.; Matsunaga, T.; Morota, T.; Honda, C.; Yokota, Y.; Pieters, C.M.; Hara, S.; Hioki, K.; Saiki, K.; et al. Lack of exposed ice inside lunar south pole Shackleton Crater. Science 2008, 322, 938–939. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, H.; Yang, S.; Yin, C.; Zhang, J.; Sun, Q.; Lai, X. Research of Drilling and Sampling Technique for Lunar Polar Region Exploration. J. Deep Space Explor. 2020, 7, 278–289. [Google Scholar] [CrossRef]
- Zhao, D.; Tang, D.; Hou, X.; Jiang, S.; Deng, Z. Soil chip convey of lunar subsurface auger drill. Adv. Space Res. 2016, 57, 2196–2203. [Google Scholar] [CrossRef]
- Cui, J.; Hou, X.; Wen, G.; Liang, Z. DEM thermal simulation of bit and object in drilling of lunar soil simulant. Adv. Space Res. 2018, 62, 967–975. [Google Scholar] [CrossRef]
- Vargas, W.L.; McCarthy, J.J. Thermal expansion effects and heat conduction in granular materials. Phys. Rev. E 2007, 76, 041301. [Google Scholar] [CrossRef]
- Cui, J. Research on Mechanics-Thermotics Characteristic of Drill-Lunar Regolith Interaction and Prediction of The Temperature Field. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2016. [Google Scholar]
- Cui, J. Research on Filling Model and Characteristic of Lunar Soil Simulant. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2011. [Google Scholar]
- Zhao, D.; Hou, X.; Tang, D.; Yuan, J.; Jiang, S.; Deng, Z. DEM parameter matching of high-dense lunar soil simulant. In Proceedings of the IEEE International Conference on Information & Automation, Lijiang, China, 8–10 August 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Deng, Z.; Cui, J.; Hou, X.; Jiang, S. Calibration of Discrete Element Heat Transfer Parameters by Central Composite Design. Chin. J. Mech. Eng. 2017, 30, 419–427. [Google Scholar] [CrossRef]
- Li, S.; Lucey, P.G.; Milliken, R.E.; Hayne, P.O.; Fisher, E.; Williams, J.-P.; Hurley, D.M.; Elphic, R.C. Direct evidence of surface exposed water ice in the lunar polar regions. Proc. Natl. Acad. Sci. USA 2018, 115, 8907–8912. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.K.; Houston, W.N.; Carrier, W.D., III; Costes, N.C. Apollo soil mechanics experiment S-200. Arch. Dermatol. Syphilol. 1974, 53, 73. [Google Scholar]
- Carrier, W.D., III; Olhoeft, G.R.; Mendell, W. Physical Properties of the Lunar Surface. In Lunar Sourcebook, A User’s Guide to the Moon; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
Sample Moisture Content | Rotation Rate (r/min) | Feed Rate (mm/min−1) | Maximum Temperature Rise of the Drill Bit (°C) | Correlation Coefficient | Maximum Relative Error | |
---|---|---|---|---|---|---|
5 wt% | 250 | 63.29 | Experiment | Simulation | 0.9912 | 10.46% |
65.50 | 72.35 |
Parameter | Thermal Conductivity of Particles (W/(M·K)) | Specific Heat Capacity of Particles (J/(kg·°C)) | Thermal Conductivity of the Drill (W/(m·K)) | Specific Heat Capacity of the Drill (J/(kg·°C)) |
---|---|---|---|---|
50.5 | 600 | 27.5 | 600 |
Parameter Number | Parameter Type | Parameter Items | Unit | Value/Range | Parameter Remarks |
---|---|---|---|---|---|
1 | Basic parameters | Moisture content | wt % | 5 (0–10) | Literature [18] and engineering environmental setting documentation |
2 | Lunar interaction parameters | Lunar soil particle density | kg/m3 | 3000 | Literature [19,20] and actual measurements, high certainty |
3 | Shear modulus | Pa | 3 × 109 (4 × 107–1 × 1010) | Literature [19,20] and simulation experience | |
4 | Poisson’s ratio | - | 0.25 (0.2–0.3) | Basic material properties, high certainty | |
5 | Static friction coefficient | - | 0.8 | Literature [16,20] and simulation experience | |
6 | Rolling friction coefficient | - | 0.6 | Literature [16,20] and simulation experience | |
7 | Coefficient of restitution | - | 0.25 | Literature [16,20] and simulation experience | |
8 | Heat transfer parameters of lunar soil | Thermal conductivity of particles | W/(m·K) | 50.5 (1–100) | Parameter matching based on the experimentally determined equivalent thermal conductivity of the simulated lunar soil |
9 | Specific heat capacity of particles | J/(kg·°C) | 228.95 (200–1000) | Experimental measurement | |
10 | Initial temperature of lunar soil | °C | −180 | Engineering setting values, with values directly related to the thermal characteristic parameters of the lunar soil, with higher certainty | |
11 | Interaction parameters between lunar soil and drill | Density of the drill | kg/m3 | 7850 | Material property |
12 | Shear modulus of the drill | Pa | 8e10 | The engineering setting value, for which the value has little influence on the force load simulation, is taken as the material property value in the simulation | |
13 | Poisson’s ratio of the drill | - | 0.25 | Material property | |
14 | Heat transfer parameters between lunar soil and drill | Thermal conductivity of the drill | W/(m·K) | 44.19 (5–50) | Material property |
15 | Specific heat capacity of the drill | J/(kg·°C) | 544 (400–800) | Material property | |
16 | Initial temperature of the drill | °C | −115 | The engineering settings value, with the values directly related to the thermal characteristics of the drilling tool and indirectly affecting the monthly soil temperature rise | |
17 | Environmental temperature | °C | −240 °C | The engineering settings value | |
18 | Emissivity | - | 0.4 | Determined by surface conditions with uncertainty | |
19 | Pressure | Pa | 1.01 × 105 (10 × 10−2–10 × 105) | The engineering setting value, with values directly related to thermal parameters, is determined by the experimental environment with high certainty | |
20 | Air convection coefficient | W/(m2·K) | 5 | The engineering setting value, with a value directly related to the heat transfer effect, is determined by the experimental environment |
Run Sequence | Thermal Conductivity of Particles (W/(m·K)) | Specific Heat Capacity of Particles (J/(kg·°C)) | Thermal Conductivity of the Drill (W/(m·K)) | Specific Heat Capacity of the Drill (J/(kg·°C)) | Drill Bit Temperature (at 80 s; °C) | Lunar Soil Temperature (at 80 s; °C) |
---|---|---|---|---|---|---|
1 | 50.5 | 600 | 27.5 | 600 | −123.02 | −152.23 |
2 | 50.5 | 1000 | 27.5 | 600 | −135 | −160.11 |
3 | 25.75 | 400 | 16.25 | 700 | −90.37 | −141.4 |
4 | 75.25 | 400 | 38.75 | 700 | −119.18 | −145.66 |
5 | 75.25 | 400 | 38.75 | 500 | −120.35 | −147.24 |
6 | 75.25 | 800 | 16.25 | 700 | −121.84 | −159.09 |
7 | 25.75 | 400 | 38.75 | 500 | −105.58 | −138.93 |
8 | 75.25 | 400 | 16.25 | 500 | −104.96 | −149.72 |
9 | 75.25 | 800 | 38.75 | 500 | −138.4 | −158.94 |
10 | 25.75 | 400 | 16.25 | 500 | −123.02 | −152.23 |
11 | 1 | 600 | 27.5 | 600 | −51.21 | −138.09 |
12 | 25.75 | 800 | 16.25 | 500 | −113.63 | −155.84 |
13 | 50.5 | 600 | 27.5 | 800 | −121.85 | −150.81 |
14 | 50.5 | 600 | 27.5 | 600 | −92.27 | −141.56 |
15 | 25.75 | 400 | 38.75 | 700 | −105.57 | −138.35 |
16 | 50.5 | 600 | 27.5 | 600 | −123.02 | −152.23 |
17 | 75.25 | 800 | 16.25 | 500 | −124.23 | −160.16 |
18 | 25.75 | 800 | 16.25 | 700 | −108.49 | −154.02 |
19 | 50.5 | 200 | 27.5 | 600 | −83.11 | −127.89 |
20 | 25.75 | 800 | 38.75 | 500 | −125.01 | −153 |
21 | 75.25 | 800 | 38.75 | 700 | −124.41 | −153.9 |
22 | 50.5 | 600 | 27.5 | 400 | −135.95 | −156.22 |
23 | 25.75 | 800 | 38.75 | 700 | −123.25 | −152.22 |
24 | 50.5 | 600 | 5 | 600 | −60.07 | −156.68 |
25 | 75.25 | 400 | 16.25 | 700 | −104.29 | −148.51 |
26 | 100 | 600 | 27.5 | 600 | −128.17 | −155.32 |
27 | 50.5 | 600 | 27.5 | 600 | −123.02 | −152.23 |
28 | 50.5 | 600 | 27.5 | 600 | −123.02 | −152.23 |
29 | 50.5 | 600 | 27.5 | 600 | −123.02 | −152.23 |
30 | 50.5 | 600 | 50 | 600 | −130.09 | −150.65 |
Coded Value | Non Coded Value | |||
---|---|---|---|---|
Thermal Conductivity of Particles (W/(m·K)) | Specific Heat Capacity of Particles (J/(kg·°C)) | Thermal Conductivity of the Drill (W/(m·K)) | Specific Heat Capacity of the Drill (J/(kg·°C)) | |
−a | 1 | 200 | 5 | 400 |
−1 | 25.75 | 400 | 16.25 | 500 |
0 | 50.5 | 600 | 27.5 | 600 |
+1 | 75.25 | 800 | 38.75 | 700 |
+a | 100 | 1000 | 50 | 800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Peng, T.; Zhang, W.; Wang, H.; Cui, J. Temperature Prediction of Icy Lunar Soil Sampling Based on the Discrete Element Method. Aerospace 2024, 11, 400. https://doi.org/10.3390/aerospace11050400
Zhao D, Peng T, Zhang W, Wang H, Cui J. Temperature Prediction of Icy Lunar Soil Sampling Based on the Discrete Element Method. Aerospace. 2024; 11(5):400. https://doi.org/10.3390/aerospace11050400
Chicago/Turabian StyleZhao, Deming, Tianyi Peng, Weiwei Zhang, He Wang, and Jinsheng Cui. 2024. "Temperature Prediction of Icy Lunar Soil Sampling Based on the Discrete Element Method" Aerospace 11, no. 5: 400. https://doi.org/10.3390/aerospace11050400
APA StyleZhao, D., Peng, T., Zhang, W., Wang, H., & Cui, J. (2024). Temperature Prediction of Icy Lunar Soil Sampling Based on the Discrete Element Method. Aerospace, 11(5), 400. https://doi.org/10.3390/aerospace11050400