Refined Aircraft Positioning Based on Stochastic Hybrid Estimation with Adaptive Square-Root Unscented Particle Filtering
Abstract
:1. Introduction
2. Methodology
2.1. Adaptive Square-Root Unscented Particle Filtering
Algorithm 1: Adaptive Square-Root Unscented Particle Filter |
2.2. Stochastic Hybrid Estimation with ASR-UPF
2.3. Track Projection
3. Results and Discussion
3.1. Scenario and Parameter Settings
3.2. Estimation Results
3.3. Results of ASR-UPF Based on Real Flight Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PBN | Performance Based Navigation |
GPS | Global Positioning System |
NED | North, East, and Down |
WGS-84 | World Geodetic System 1984 |
ASR-UPF | Adaptive square-root unscented particle filter |
SR-UKF | Square-root unscented Kalman filter |
MLDM | Mixed logical dynamic model |
GFHMM | Generalized fuzzy hidden Markov model |
IMM | Interacting multiple model |
SDTHE | State-dependent transition hybrid estimation |
EKF | Extended Kalman filter |
UKF | Unscented Kalman filter |
CKF | Cubature Kalman filter |
Appendix A
Appendix A.1
References
- ICAO. ICAO 9613 Performance-Based Navigation (PBN) Manual; ICAO: Montreal, QC, Canada, 2013; Available online: https://standards.globalspec.com/std/1687641/icao-9613 (accessed on 16 May 2024).
- Pretto, M.; Giannattasio, P.; De Gennaro, M. Mixed analysis-synthesis approach for estimating airport noise from civil air traffic. Transp. Res. Part D Transp. Environ. 2022, 106, 103248. [Google Scholar] [CrossRef]
- Nandiganahalli, J.S.; Lee, S.; Hwang, I. Formal Verification for Mode Confusion in the Flight Deck Using Intent-Based Abstraction. J. Aerosp. Inf. Syst. 2016, 13, 343–356. [Google Scholar] [CrossRef]
- Menci, M.; Papi, M.; Smarrazzo, F. Existence of solutions for coupled hybrid systems of differential equations for mi-croscopic dynamics and local concentrations. Commun. Pure Appl. Anal. 2023, 22, 2146–2168. [Google Scholar] [CrossRef]
- Degani, A.; Shafto, M.; Kirlik, A. Modes in Human-Machine Systems: Constructs, representation and classification. Int. J. Aviat. Psychol. 1999, 9, 125–138. [Google Scholar] [CrossRef]
- Sirmatel, I.I.; Geroliminis, N. Mixed logical dynamical modeling and hybrid model predictive control of public transport operations. Transp. Res. Part B Methodol. 2018, 114, 325–345. [Google Scholar] [CrossRef]
- Pataro, I.M.L.; Gil, J.D.; da Americano, C.M.V.; Guzmán, J.L.; Berenguel, M. A nonlinear control approach for hybrid solar thermal plants based on operational conditions. Renew. Energy 2022, 183, 114–129. [Google Scholar] [CrossRef]
- Lyu, H.; Nandiganahalli, J.S.; Hwang, I. Human Automation Interaction Issue Detection Using a Generalized Fuzzy Hidden Markov Model. In Proceedings of the AIAA Information Systems-AIAA Infotech at Aerospace, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar] [CrossRef]
- Lyu, H.; Nandiganahalli, J.S.; Hwang, I. Automation intent inference using the GFHMM for flight deck mode confusion detection. J. Aerosp. Inf. Syst. 2018, 15, 172–177. [Google Scholar] [CrossRef]
- Arroyo, C.A.; Asensio, V.M. Adaptive IMM-UKF for Airborne Tracking. Aerospace 2023, 10, 698. [Google Scholar] [CrossRef]
- Yin, J.; Yang, Z.; Luo, Y. Adaptive tracking method for non-cooperative continuously thrusting spacecraft. Aerospace 2021, 8, 244. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Ardeshiri, M.; Khanghah, S.A. Bearing-only 2D maneuvering target tracking using smart interacting multiple model filter. Digit. Signal Process. 2022, 126, 103497. [Google Scholar] [CrossRef]
- Xu, W.; Xiao, J.; Xu, D.; Wang, H.; Cao, J. An Adaptive IMM Algorithm for a PD Radar with Improved Maneuvering Target Tracking Performance. Remote Sens. 2024, 16, 1051. [Google Scholar] [CrossRef]
- Seah, C.E.; Hwang, I. Stochastic Linear Hybrid Systems: Modeling, Estimation, and Application in Air Traffic Control. IEEE Trans. Control Syst. Technol. 2009, 17, 563–575. [Google Scholar] [CrossRef]
- Lee, S.; Hwang, I.; Leiden, K. Intent Inference-Based Flight-Deck Human-Automation Mode-Confusion Detection. J. Aerosp. Inf. Syst. 2015, 12, 503–518. [Google Scholar] [CrossRef]
- Lee, J.; Hwang, I.; Shim, D.H. UAS surveillance in low-altitude airspace with geofencing: Constrained stochastic linear hybrid systems approach. In Proceedings of the 2018 AIAA Information Systems-AIAA Infotech @ Aerospace, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar] [CrossRef]
- Shan, D.; Wang, D.; He, D.; Zhang, P. Position Sensorless Vector Control System for Lawnmower Permanent Magnet Synchronous Motor Based on Extended Kalman Filter. Energies 2024, 17, 1230. [Google Scholar] [CrossRef]
- Khan, A.B.; Akram, A.S.; Choi, W. State of Charge Estimation of Flooded Lead Acid Battery Using Adaptive Unscented Kalman Filter. Energies 2024, 17, 1275. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, S.; Gao, Y.; Dai, J.; Ren, Z.; Liu, Y. An Ultra-Wideband Indoor Localization Algorithm with Improved Cubature Kalman Filtering Based on Sigmoid Function. Appl. Sci. 2024, 14, 2239. [Google Scholar] [CrossRef]
- Tivay, A.; Hahn, J. A Population-Informed Particle Filter for Robust Physiological Monitoring Using Low-Information Time-Series Measurements. IEEE Trans. Biomed. Eng. 2023, 70, 2298–2309. [Google Scholar] [CrossRef] [PubMed]
- Zare, H.; Weber, T.K.D.; Ingwersen, J.; Nowak, W.; Gayler, S.; Streck, T. Combining Crop Modeling with Remote Sensing Data Using a Particle Filtering Technique to Produce Real-Time Forecasts of Winter Wheat Yields under Uncertain Boundary Conditions. Remote Sens. 2024, 14, 1360. [Google Scholar] [CrossRef]
- Kanthalakshmi, S.; Raghappriya, M. Active fault diagnosis of 2 DoF helicopter using particle filter-based log-likelihood ratio. Int. J. Control 2022, 95, 3148–3165. [Google Scholar] [CrossRef]
- Peng, S.; Zhang, A.; Liu, D.; Cheng, M.; Kan, J.; Pecht, M. State-of-Charge Estimation of Lithium-Ion Batteries Based on Dual-Coefficient Tracking Improved Square-Root Unscented Kalman Filter. Batteries 2023, 9, 392. [Google Scholar] [CrossRef]
- Janjanam, L.; Saha, S.K.; Kar, R.; Mandal, D. Hammerstein-Wiener nonlinear system identification by using honey badger algorithm hybridized Sage-Husa adaptive Kalman filter with real-time applications. Int. J. Electron. Commun. 2022, 151, 154218. [Google Scholar] [CrossRef]
- Seah, C.E.; Hwang, I. State Estimation for Stochastic Linear Hybrid Systems with Continuous-State-Dependent Transitions: An IMM Approach. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 376–392. [Google Scholar] [CrossRef]
- Fazilova, D. Uzbekistan’s coordinate system transformation from CS42 to WGS84 using distortion grid model. Geod. Geodyn. 2022, 13, 24–30. [Google Scholar] [CrossRef]
- Wang, P.; Wang, M.; Yang, Y. Particle Filter with improved MSV Resample for Manoeuvring Target Tracking. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 6522–6527. [Google Scholar] [CrossRef]
- Petrera, M.; Suris, Y.B. Spherical geometry and integrable systems. Geom. Dedicata 2014, 169, 93–98. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, Y.; Ochieng, W.Y.; Xiang, Z. Adaptive Air-Data Smoothing Estimation with Customized Wind Model Based on Flight Data. J. Aerosp. Eng. 2022, 35, 04022054. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, H.; Xiang, Z. Flight Data-Based Wind Disturbance and Air Data Estimation. Atmosphere 2021, 12, 470. [Google Scholar] [CrossRef]
Parameters | WPT1 | WPT2 | Level Flight | |||
---|---|---|---|---|---|---|
/ | / | / | / | |||
2241.767 | 3.046 | 2086.072 | 2.536 | 1786.758 | 1.653 | |
108.127 | 1.862 | 274.845 | 1.387 | - | - |
Modes | ||||
---|---|---|---|---|
1 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | |
0 | ||||
0 | 0 |
Algorithm | RMSE | |||
---|---|---|---|---|
(m) | (m) | (m) | (°) | |
SR-UKF | 43.586 | 29.594 | 63.860 | 4.862 |
ASR-UPF with 100 particles | 20.658 | 21.395 | 25.674 | 4.206 |
ASR-UPF with 300 particles | 14.377 | 12.593 | 20.805 | 3.551 |
ASR-UPF with 500 particles | 14.476 | 12.203 | 19.231 | 3.704 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Gao, Z.; Qi, K.; Li, J. Refined Aircraft Positioning Based on Stochastic Hybrid Estimation with Adaptive Square-Root Unscented Particle Filtering. Aerospace 2024, 11, 413. https://doi.org/10.3390/aerospace11050413
Zhang Y, Gao Z, Qi K, Li J. Refined Aircraft Positioning Based on Stochastic Hybrid Estimation with Adaptive Square-Root Unscented Particle Filtering. Aerospace. 2024; 11(5):413. https://doi.org/10.3390/aerospace11050413
Chicago/Turabian StyleZhang, Yangyang, Zhenxing Gao, Kai Qi, and Jiawei Li. 2024. "Refined Aircraft Positioning Based on Stochastic Hybrid Estimation with Adaptive Square-Root Unscented Particle Filtering" Aerospace 11, no. 5: 413. https://doi.org/10.3390/aerospace11050413
APA StyleZhang, Y., Gao, Z., Qi, K., & Li, J. (2024). Refined Aircraft Positioning Based on Stochastic Hybrid Estimation with Adaptive Square-Root Unscented Particle Filtering. Aerospace, 11(5), 413. https://doi.org/10.3390/aerospace11050413