Cyclic Ablation Properties of C/SiC-ZrC Composites
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
3. Results and Analysis
3.1. Results
3.1.1. Macroscopic Morphology and Ablation Properties
3.1.2. Microstructure and Morphology
3.2. Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anand, V.; Gutmark, E.J. Rotating Detonations and Spinning Detonations: Similarities and Differences. AIAA J. 2018, 56, 1717–1722. [Google Scholar] [CrossRef]
- Sam, L.; Idithsaj, P.T.; Nair, P.P.; Suryan, A.; Narayanan, V. Prospects for scramjet engines in reusable launch applications: A review. Int. J. Hydrogen Energy 2023, 48, 36094–36111. [Google Scholar] [CrossRef]
- Huang, W.; Du, Z.B.; Yan, L.; Moradi, R. Flame propagation and stabilization in dual-mode scramjet combustors: A survey. Prog. Aerosp. Sci. 2018, 101, 13–30. [Google Scholar] [CrossRef]
- Natali, M.; Kenny, J.M.; Torre, L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review. Prog. Mater. Sci. 2016, 84, 192–275. [Google Scholar] [CrossRef]
- Al-Jothery, H.K.M.; Albarody, T.M.B.; Yusoff, P.S.M.; Abdullah, M.A.; Hussein, A.R. A review of ultra-high temperature materials for thermal protection system. In IOP Conference Series: Materials Science and Engineering, Proceedings of the Symposium on Energy Systems 2019 (SES 2019), Kuantan, Malaysia, 1–2 October 2019; IOP Publishing: Bristol, UK, 2020; Volume 863, p. 012003. [Google Scholar]
- Uyanna, O.; Najafi, H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects—ScienceDirect. Acta Astronaut. 2020, 176, 341–356. [Google Scholar] [CrossRef]
- Fang, G.; Gao, X.; Song, Y. A review on ceramic matrix composites and environmental barrier coatings for aero-engine: Material development and failure analysis. Coatings 2023, 13, 357. [Google Scholar] [CrossRef]
- Lev, T.; Sanh, N.; Goon, S. Advanced sandwich structures for thermal protection systems in hypersonic vehicles: A review. Compos. Part B Eng. 2021, 226, 109301. [Google Scholar]
- Liu, L.; Li, H.; Shi, X.; Fu, Q.; Feng, W.; Yao, X.; Ni, C. Influence of SiC additive on the ablation behavior of C/C composites modified by ZrB2–ZrC particles under oxyacetylene torch. Ceram. Int. 2014, 40, 541–549. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, L.T.; Cheng, L.F.; Luan, X. Ablation Characteristic of 3D C/SiC Composite Nozzle in a Small Solid Rocket Motor. J. Inorg. Mater. 2008, 23, 938–944. [Google Scholar] [CrossRef]
- Sevastyanov, V.G.; Simonenko, E.P.; Gordeev, A.N.; Simonenko, N.P.; Kolesnikov, A.F.; Papynov, E.K.; Shichalin, O.O.; Avramenko, V.A.; Kuznetsov, N.T. HfB2-SiC (45 vol %) ceramic material: Manufacture and behavior under long-term exposure to dissociated air jet flow. Russ. J. Inorg. Chem. 2014, 59, 1298–1311. [Google Scholar] [CrossRef]
- Shi, S.; Li, L.; Liang, J.; Tang, S. Surface and volumetric ablation behaviors of SiFRP composites at high heating rates for thermal protection applications. Int. J. Heat Mass Transf. 2016, 102, 1190–1198. [Google Scholar] [CrossRef]
- Wang, Y.; Risch, T.K.; Koo, J.H. Assessment of a one-dimensional finite element charring ablation material response model for phenolic-impregnated carbon ablator. Aerosp. Sci. Technol. 2019, 91, 301–309. [Google Scholar] [CrossRef]
- Natali, M.; Puri, I.; Rallini, M.; Kenny, J.; Torre, L. Ablation modeling of state of the art EPDM based elastomeric heat shielding materials for solid rocket motors. Comput. Mater. Sci. 2016, 111, 460–480. [Google Scholar] [CrossRef]
- Yu, G.; Du, J.; Zhao, X.; Xie, C.; Gao, X.; Song, Y.; Wang, F. Morphology and microstructure of SiC/SiC composites ablated by oxyacetylene torch at 1800 °C. J. Eur. Ceram. Soc. 2021, 41, 6894–6904. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Ren, M.; Zuo, Y.; Yang, M.; Zhang, J.; Sun, J. Microstructure and ablation mechanism of C/C-ZrC-SiC composites in a plasma flame. Ceram. Int. 2017, 43, 10661–10667. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Su, Z.A.; Xue, L.; Zhong, P.; Li, S.P.; Huang, Q.Z.; Liu, H.W. Effect of ZrC–SiC content on microstructure and ablation properties of C/C composites. Trans. Nonferrous Met. Soc. China 2016, 26, 2653–2664. [Google Scholar] [CrossRef]
- Tian, W.; Bai, X.; Guo, C.Y. Oxidation ablation resistance mechanism of C/C-SiC-HfB2 composite. J. Solid Rocket. Technol. 2019, 42, 724–729. [Google Scholar]
- Liu, R.; Liu, X.; Wang, Y.; Miao, H.; Song, C.; Qi, G.; Wan, F. Laser ablation behavior and mechanism of Cf/SiC-ZrC ultra-high temperature ceramic matrix composite prepared by PIP method. Ceram. Int. 2021, 47, 23610–23619. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, W.; Wang, S.; Chen, Z.H. Oxidation behavior of oxidation protective coatings for PIP–C/SiC composites at 1500 °C. Ceram. Int. 2012, 38, 9–13. [Google Scholar] [CrossRef]
- Zhao, Z.G.; Li, K.Z.; Li, W. Ablation behavior of ZrC-SiC-ZrB2 and ZrC-SiC inhibited carbon/carbon composites components under ultrahigh temperature conditions. Corros. Sci. 2021, 189, 109598. [Google Scholar] [CrossRef]
- Fan, X.; Dang, X.; Ma, Y.; Yin, X.; Zhang, L.; Cheng, L. Microstructure, mechanical and ablation behaviour of C/SiC–Si with different preforms. Ceram. Int. 2019, 45, 23104–23110. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, K.; Li, W.; Zhang, L. Cyclic ablation behavior of C/C-ZrC-SiC-ZrB2 composites under oxyacetylene torch with two heat fluxes at the temperatures above 2000 °C. Corros. Sci. 2021, 181, 109202. [Google Scholar] [CrossRef]
- Chen, Z.; Fang, D.; Miao, Y.; Yan, B. Comparison of morphology and microstructure of ablation centre of C/SiC composites by oxy-acetylene torch at 2900 and 3550 °C. Corros. Sci. 2008, 50, 3378–3381. [Google Scholar] [CrossRef]
- Song, C.; Ye, F.; Cheng, L. Long-term ceramic matrix composite for aeroengine. J. Adv. Ceram. 2022, 11, 1343–1374. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Yu, S. Ablation behavior and mechanism analysis of C/SiC composites. J. Mater. Res. Technol. 2016, 5, 170–182. [Google Scholar] [CrossRef]
- Raman, V.; Prakash, S.; Gamba, M. Nonidealities in rotating detonation engines. Annu. Rev. Fluid Mech. 2023, 55, 639–674. [Google Scholar] [CrossRef]
- Wang, G.; Liu, S.; Peng, H.; Liu, W. Experimental Investigation of a Cylindrical Air-Breathing Continuous Rotating Detonation Engine with Different Nozzle Throat Diameters. Aerospace 2022, 9, 267. [Google Scholar] [CrossRef]
- Shi, L.; Fan, E.; Shen, H.; Wen, C.Y.; Shang, S.; Hu, H. Numerical study of the effects of injection conditions on rotating detonation engine propulsive performance. Aerospace 2023, 10, 879. [Google Scholar] [CrossRef]
- Ge, H.; Zhang, L.; Feng, F.; Du, J.; Huan, T.; Gao, X.; Song, Y. Comparative Ablation Behaviors of 2D Needled C/SiC and C/SiC-ZrC Composites. Coatings 2024, 14, 480. [Google Scholar] [CrossRef]
- TORAY®Fiber Product Data [EB/OL]. Available online: https://www.torayca.cn/lineup/product/pro_001_01.html (accessed on 4 May 2020).
- Zhang, S.; Gao, X.G.; Song, Y.D. In situ strength model for continuous fibers and multi-scale modeling the fracture of C/SiC composites. Appl. Compos. Mater. 2019, 26, 357–370. [Google Scholar] [CrossRef]
- Mei, H.; Cheng, L.F. Comparison of the mechanical hysteresis of carbon/ceramic matrix composites with different fiber preforms. Carbon 2009, 47, 1034–1042. [Google Scholar] [CrossRef]
- GJB232A-96; Test Methods for Ablation of Ablators. Military Standard Publishing House of the National Defense Science and Technology Commission: Beijing, China, 1997.
- Du, J.; Yu, G.; Jia, Y.; Ni, Z.; Gao, X.; Song, Y.; Wang, F. Ultra-high temperature ablation behaviour of 2.5 D SiC/SiC under an oxy-acetylene torch. Corros. Sci. 2022, 201, 110263. [Google Scholar] [CrossRef]
- Feng, B.; Li, H.; Zhang, Y.; Liu, L.; Yan, M. Effect of SiC/ZrC ratio on the mechanical and ablation properties of C/C–SiC–ZrC composites. Corros. Sci. 2014, 82, 27–35. [Google Scholar] [CrossRef]
- Yan, C.; Liu, R.; Cao, Y.; Zhang, C.; Zhang, D. Ablation behavior and mechanism of C/ZrC, C/ZrC–SiC and C/SiC composites fabricated by polymer infiltration and pyrolysis process. Corros. Sci. 2014, 86, 131–141. [Google Scholar] [CrossRef]
- Cui, Y.; Li, A.; Li, B.; Ma, X.; Bai, R.; Zhang, W.; Ren, M.; Sun, J. Microstructure and ablation mechanism of C/C–SiC composites. J. Eur. Ceram. Soc. 2014, 34, 171–177. [Google Scholar] [CrossRef]
- Weng, Y.; Yang, X.; Chen, F.; Zhang, X.; Shi, A.; Yan, J.; Huang, Q. Effect of CVI SiC content on ablation and mechanism of C/C-SiC-ZrC-Cu composites. Ceram. Int. 2022, 48, 7937–7950. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, K.; Kou, G.; Li, W. Comparative research on cyclic ablation behavior of C/C-ZrC-SiC and C/C-ZrC composites at temperatures above 2000 °C. Corros. Sci. 2022, 206, 110496. [Google Scholar] [CrossRef]
- Balat, M.J.H. Determination of the active-to-passive transition in the oxidation of silicon carbide in standard and microwave-excited air. J. Eur. Ceram. Soc. 1996, 16, 55–62. [Google Scholar] [CrossRef]
- Li, H.J.; Yao, X.Y.; Zhang, Y.L.; Li, K.Z.; Guo, L.J.; Liu, L. Effect of heat flux on ablation behaviour and mechanism of C/C–ZrB2–SiC composite under oxyacetylene torch flame. Corros. Sci. 2013, 74, 265–270. [Google Scholar] [CrossRef]
- Fan, X.; Yin, X.; Wang, L.; Cheng, L.; Zhang, L. Processing, microstructure and ablation behavior of C/SiC–Ti3SiC2 composites fabricated by liquid silicon infiltration. Corros. Sci. 2013, 74, 98–105. [Google Scholar] [CrossRef]
- Fang, D.; Chen, Z.; Song, Y.; Sun, Z. Morphology and microstructure of 2.5 dimension C/SiC composites ablated by oxyacetylene torch. Ceram. Int. 2009, 35, 1249–1253. [Google Scholar] [CrossRef]
- Lachaud, J.; Aspa, Y.; Vignoles, G.L. Analytical modeling of the steady state ablation of a 3D C/C composite. Int. J. Heat Mass Transf. 2008, 51, 2614–2627. [Google Scholar] [CrossRef]
- Zhang, S. Multi-Scale Analysis of the Mechanical Behavior for Braided Ceramic Matrix Composites. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2020. [Google Scholar]
- Du, J.; Yu, G.; Zhang, H.; Jia, Y.; Chen, R.; Liu, C.; Gao, X.; Wang, F.; Song, Y. Microstructural evolution mechanism of plain-woven SiC/SiC during thermal ablation. Corros. Sci. 2022, 208, 110679. [Google Scholar] [CrossRef]
C/SiC-ZrC | Value |
Density (g/cm3) | 1.95 |
Fiber density (g/cm3) [31] | 1.8 |
Fiber diameter (D/) | 5 |
CTE of SiC matrix: [32] | 4.6 × 10−6 |
CTE of ZrC matrix: | 6.7 × 10−6 |
CTE of C fiber: [33] | 1.12 × 10−6 |
O2 Flux (m3/min) | O2 Pressure (MPa) | C2H2 Flux (m3/min) | C2H2 Pressure (MPa) | Q (kW/m2) | Tmax (°C) |
---|---|---|---|---|---|
0.0252 | 0.4 | 0.0186 | 0.095 | 4200 | 3000 |
Materials | Parameters | CSZ-30 | CSZ-15×2 | CSZ-40 | CSZ-20×2 | CSZ-60 | CSZ-30×2 |
---|---|---|---|---|---|---|---|
C/SiC-ZrC | Ablation time/s | 30 | 15 × 2 | 40 | 20 × 2 | 60 | 30 × 2 |
Thickness before ablation/mm | 5.168 | 5.170 | 5.158 | 5.197 | 5.156 | 5.161 | |
Thickness after ablation/mm | 4.273 | 4.361 | 4.092 | 4.298 | 3.623 | 3.792 | |
LAR/(µm·s−1) | 29.8 | 27 | 26.7 | 22.5 | 25.6 | 22.8 | |
Mass before ablation/g | 9.0482 | 8.9830 | 9.0260 | 9.1637 | 9.0794 | 9.1915 | |
Mass after ablation/g | 8.7252 | 8.7637 | 8.6744 | 8.8723 | 8.6026 | 8.8254 | |
MAR/(mg·s−1) | 10.7 | 7.3 | 8.8 | 7.3 | 7.9 | 6.1 |
Element | Weight (%) | Atomic (%) | Error (%) |
---|---|---|---|
O | 52.3 | 78.2 | 10.3 |
Si | 15.9 | 13.5 | 5.4 |
Zr | 31.8 | 8.3 | 5.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, H.; Zhang, L.; Zhang, H.; Wang, F.; Gao, X.; Song, Y. Cyclic Ablation Properties of C/SiC-ZrC Composites. Aerospace 2024, 11, 432. https://doi.org/10.3390/aerospace11060432
Ge H, Zhang L, Zhang H, Wang F, Gao X, Song Y. Cyclic Ablation Properties of C/SiC-ZrC Composites. Aerospace. 2024; 11(6):432. https://doi.org/10.3390/aerospace11060432
Chicago/Turabian StyleGe, Hailang, Lu Zhang, Huajun Zhang, Fang Wang, Xiguang Gao, and Yingdong Song. 2024. "Cyclic Ablation Properties of C/SiC-ZrC Composites" Aerospace 11, no. 6: 432. https://doi.org/10.3390/aerospace11060432
APA StyleGe, H., Zhang, L., Zhang, H., Wang, F., Gao, X., & Song, Y. (2024). Cyclic Ablation Properties of C/SiC-ZrC Composites. Aerospace, 11(6), 432. https://doi.org/10.3390/aerospace11060432