Study on the Influence of a Powered Nacelle on the Wake Vortex Characteristics of Wide-Body Aircraft
Abstract
:1. Introduction
2. Methods and Validation
2.1. Methods
2.1.1. Geometric Model and Mesh Generation
2.1.2. Numerical Method
2.1.3. Simplified Simulation Method of Engine Jet Flow
2.2. Case Verification
2.2.1. Comparison of LES and RANS Methods
2.2.2. TPS Wind Tunnel Test Model Validation
2.2.3. Verification of the Current around the Standard Model of a Typical Wing-Body Assembly
3. Results and Discussion
3.1. Comparison of the Effects between Nacelle and without Nacelle Configuration on Aircraft Wake Vortex
3.2. Effect of Engine Jet Intensity on Aircraft Wake Vortex
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
fluid density | |
fluid viscosity coefficient | |
average velocity component | |
b0 | initial vortex spacing |
pulsating velocity component | |
velocity in the direction in the calculation domain | |
velocity in the direction in the computational domain | |
fluid pressure | |
explanations for buoyancy terms | |
stress tensor component | |
turbulent kinetic energy | |
generation of | |
turbulent Prandtl numbers for | |
turbulent Prandtl numbers for | |
N | BV frequency |
vortex circulation | |
turbulent viscosity | |
Abbreviations | |
BV | Brunt–Väisälä |
CFD | Computational Fluid Dynamic |
RANS | Reynolds averaged Navier–Stokes equation |
MFR | mass flow rate |
LES | Large eddy simulation |
TPS | turbine dynamics simulation |
PIV | high-speed particle image velocimetry |
total temperature ratio | |
T0,2 | total temperature at the outlet of the bypass |
References
- Gerz, T.; Holzapfel, F. Wing-Tip Vortices, Turbulence, and the Distribution of Emissions. AIAA J. 1999, 37, 1270–1276. [Google Scholar] [CrossRef]
- Crow, S.C. Stability Theory for a Pair of Trailing Vortices. AIAA J. 1970, 8, 2172–2179. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Y.; Li, D.; Zhang, Z.; Pan, W. Numerical Simulation of Aircraft Wake Vortex Evolution and Wake Encounters Based on Adaptive Mesh Method. Eng. Appl. Comput. Fluid Mech. 2020, 14, 1445–1457. [Google Scholar] [CrossRef]
- De Visscher, I.; Bricteux, L.; Winckelmans, G. Aircraft Vortices in Stably Stratified and Weakly Turbulent Atmospheres: Simulation and Modeling. AIAA J. 2013, 51, 551–566. [Google Scholar] [CrossRef]
- Li, D.; Xu, Z.; Zhang, K.; Zhang, Z.; Zhou, J.; Pan, W.; Wang, X. Study on the Influence of Linear and Nonlinear Distribution of Crosswind on the Motion of Aircraft Wake Vortex. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2021, 235, 1981–1990. [Google Scholar] [CrossRef]
- Luo, H.; Pan, W.; Wang, Y.; Luo, Y. A330-300 Wake Encounter by ARJ21 Aircraft. Aerospace 2024, 11, 144. [Google Scholar] [CrossRef]
- Lin, M.; Cui, G.; Zhang, Z.; Xu, C.; Huang, W. Large eddy simulation on the evolution and the fast-time prediction of aircraft wake vortices. Chin. J. Theor. Appl. Mech. 2017, 49, 1185–1200. [Google Scholar] [CrossRef]
- Xu, Z.; Li, D.; An, B.; Pan, W. Enhancement of Wake Vortex Decay by Air Blowing from the Ground. Aerosp. Sci. Technol. 2021, 118, 107029. [Google Scholar] [CrossRef]
- Holzäpfel, F.; Strauss, L.; Schwarz, C. Assessment of Dynamic Pairwise Wake Vortex Separations for Approach and Landing at Vienna Airport. Aerosp. Sci. Technol. 2021, 112, 106618. [Google Scholar] [CrossRef]
- Chen, J.; Wu, Y.; Hua, O.; Wang, A. Research on the Ground Vortex and Inlet Flow Field under the Ground Crosswind Condition. Aerosp. Sci. Technol. 2021, 115, 106772. [Google Scholar] [CrossRef]
- Xu, Z.; Li, D.; Cai, J. Long-Wave Deformation of in-Ground-Effect Wake Vortex under Crosswind Condition. Aerosp. Sci. Technol. 2023, 142, 108697. [Google Scholar] [CrossRef]
- Holzäpfel, F.; Tchipev, N.; Stephan, A. Wind Impact on Single Vortices and Counterrotating Vortex Pairs in Ground Proximity. Flow Turbul. Combust. 2016, 97, 829–848. [Google Scholar] [CrossRef]
- de Carvalho, G.F.M.; Vidille, M.F.; Bimbato, A.M.; Alcântara Pereira, L.A. Lagrangian Vortices Interactions Using Large-Eddy Simulation (LES) and Surface Roughness Model—Application for Aircraft Wake Vortices with Crosswind. Appl. Sci. 2023, 13, 12336. [Google Scholar] [CrossRef]
- Stephan, A.; Rohlmann, D.; Holzäpfel, F.; Rudnik, R. Effects of Detailed Aircraft Geometry on Wake Vortex Dynamics during Landing. J. Aircr. 2019, 56, 974–989. [Google Scholar] [CrossRef]
- Allen, A.; Breitsamter, C. Landing Gear Influence on the Wake Vortex of a Large Transport Aircraft. J. Aircr. 2008, 45, 1367–1372. [Google Scholar] [CrossRef]
- Zhong, Y.; Ma, H.; Guo, J. Multi-Scale Proper Orthogonal Decomposition (mPOD) Analysis of Vortex Evolution and Viscous Dissipation in a Circular-Cylinder Wake Controlled by Parallel Symmetric Jets. Ocean. Eng. 2023, 289, 116280. [Google Scholar] [CrossRef]
- Gao, D.; Chen, G.; Min, X.; Chen, W. Wake-Vortex Evolution behind a Fixed Circular Cylinder with Symmetric Jets. Exp. Therm. Fluid Sci. 2022, 135, 110629. [Google Scholar] [CrossRef]
- Jacquin, L.; Molton, P.; Loiret, P.; Coustols, E. An Experiment on Jet-Wake Vortex Interaction. In Proceedings of the 37th AIAA Fluid Dynamics Conference and Exhibit, Miami, FL, USA, 25–28 June 2007; American Institute of Aeronautics and Astronautics: Boonville Township, MO, USA, 2007. [Google Scholar]
- Depommier, G.; Labbe, O.; Sagaut, P. Evolution Analysis of the Main Mechanisms of the Jet/Vortex Interaction. In Proceedings of the 39th AIAA Fluid Dynamics Conference, San Antonio, TX, USA, 22 June 2009; American Institute of Aeronautics and Astronautics: Boonville Township, MO, USA, 2009. [Google Scholar]
- Margaris, P.; Marles, D.; Gursul, I. Experiments on Interaction of a Jet with a Trailing Vortex. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8 January 2007; American Institute of Aeronautics and Astronautics: Boonville Township, MO, USA, 2007. [Google Scholar]
- Menter, F.R. Review of the Shear-Stress Transport Turbulence Model Experience from an Industrial Perspective. Int. J. Comput. Fluid Dyn. 2009, 23, 305–316. [Google Scholar] [CrossRef]
- Hirose, N.; Keisuke, A.; Ryuma, K.; Katuya, I. Euler flow analysis of turbine powered simulator and fanjet engine. J. Propuls. Power 1991, 7, 1015–1022. [Google Scholar] [CrossRef]
Ma | Re | H | |
---|---|---|---|
0.85 | 1.71° | 11 km |
Ma | MFR | BPR | α | |||
---|---|---|---|---|---|---|
1 | 0.80102 | 0.52324 | 1.566 | 0 | 0.60995 | 1.13299 |
2 | 0.6024 | 0.49609 | 2.4917 | 0 | 0.67204 | 1.06338 |
3 | 0.50083 | 0.69903 | 1.1893 | 0 | 0.607.6 | 1.14858 |
Force Coefficient | CL | CD | CM |
---|---|---|---|
Experiment | 0.378 | 0.0192 | −0.091 |
CFD | 0.388 | 0.0204 | −0.087 |
Error | 2.6% | 4.2% | 4.4% |
Ma | Re | H | |
---|---|---|---|
0.85 | 0°, 1.71°, 4° | 11 km |
Total Temperature at the Inlet of the Fan | Total Temperature at the Outlet of the Bypass (T0,2) | Total Temperature Ratio | Jet Flow Intensity | Mass Flow Rate |
---|---|---|---|---|
216 K | 300 K | 1.34 | weak jet flow | 460 kg/s |
216 K | 400 K | 1.85 | medium jet flow | 440 kg/s |
216 K | 500 K | 2.31 | strong jet flow | 420 kg/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wu, J.; Guo, Q.; Liu, G.; Wu, J.; Liu, D.; Tao, Y.; Xiong, N. Study on the Influence of a Powered Nacelle on the Wake Vortex Characteristics of Wide-Body Aircraft. Aerospace 2024, 11, 452. https://doi.org/10.3390/aerospace11060452
Wang H, Wu J, Guo Q, Liu G, Wu J, Liu D, Tao Y, Xiong N. Study on the Influence of a Powered Nacelle on the Wake Vortex Characteristics of Wide-Body Aircraft. Aerospace. 2024; 11(6):452. https://doi.org/10.3390/aerospace11060452
Chicago/Turabian StyleWang, Hexiang, Junqiang Wu, Qiuting Guo, Guangyuan Liu, Jifei Wu, Dawei Liu, Yang Tao, and Neng Xiong. 2024. "Study on the Influence of a Powered Nacelle on the Wake Vortex Characteristics of Wide-Body Aircraft" Aerospace 11, no. 6: 452. https://doi.org/10.3390/aerospace11060452
APA StyleWang, H., Wu, J., Guo, Q., Liu, G., Wu, J., Liu, D., Tao, Y., & Xiong, N. (2024). Study on the Influence of a Powered Nacelle on the Wake Vortex Characteristics of Wide-Body Aircraft. Aerospace, 11(6), 452. https://doi.org/10.3390/aerospace11060452