Stealth Unmanned Aerial Vehicle Penetration Efficiency Optimization Based on Radar Detection Probability Model
Abstract
:1. Introduction
2. Numerical Optimization Methodology
2.1. Geometric Parameterization
2.2. Numerical Solver
2.2.1. CEM Solver
2.2.2. CFD Solver
2.3. Aerodynamic/Stealth Optimization Methodology
2.3.1. Radar Detection Probability Model and Penetration Efficiency
2.3.2. Three-Dimensional Wing Optimization and Algorithm
3. Optimization Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ufimtsev, P.Y. Comments on diffraction principles and limitations of RCS reduction techniques. Proc. IEEE 1996, 84, 1830–1851. [Google Scholar] [CrossRef]
- Zhou, L.; Huang, J.; Gao, Z.; Zhang, W. Three-Dimensional Aerodynamic/Stealth Optimization Based on Adjoint Sensitivity Analysis for Scattering Problem. AIAA J. 2020, 58, 2702–2715. [Google Scholar] [CrossRef]
- Tianyuan, H.; Xiongqing, Y. Aerodynamic/Stealthy/Structural Multidisciplinary Design Optimization of Unmanned Combat Air Vehicle. Chin. J. Aeronaut. 2009, 22, 380–386. [Google Scholar] [CrossRef]
- Pan, Y.; Huang, J.; Li, F.; Yan, C. Integrated design optimization of aerodynamic and stealthy performance for flying wing aircraft. In Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, China, 15–17 March 2017; pp. 15–17. [Google Scholar]
- Li, M.; Bai, J.; Li, L.; Meng, X.; Liu, Q.; Chen, B. A gradient-based aero-stealth optimization design method for flying wing aircraft. Aerosp. Sci. Technol. 2019, 92, 156–169. [Google Scholar] [CrossRef]
- Li, M.; Chen, J.; Feng, X.; Qu, F.; Bai, J. An efficient adjoint method for the aero-stealth shape optimization design. Aerosp. Sci. Technol. 2021, 118, 107017. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, G.; Zhao, X.; Wang, B.; Ma, X. An Integrated Optimization Method of Wingtip Stealth/Aerodynamic Using Surrogate-Based Method. In Proceedings of the 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021), Changsha, China, 24–26 September 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 348–357. [Google Scholar]
- Taj, Z.U.D.; Bilal, A.; Awais, M.; Salamat, S.; Abbas, M.; Maqsood, A. Design exploration and optimization of aerodynamics and radar cross section for a fighter aircraft. Aerosp. Sci. Technol. 2023, 133, 108114. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, J.; Yi, M. Comprehensive optimization of aerodynamic noise and radar stealth for helicopter rotor based on Pareto solution. Aerosp. Sci. Technol. 2018, 82–83, 607–619. [Google Scholar] [CrossRef]
- Wu, D.; Long, T.; Li, Y.; Jiang, M.; Huang, B. Aero-structure-stealth coupled optimization for high aspect ratio wing using adaptive metamodeling method. In Proceedings of the 15th AI-AA/ISSMO Multidisciplinary Analysis and Optimization Conference, Atlanta, GA, USA, 16–20 June 2014; p. 2304. [Google Scholar]
- Lu, X.; Huang, J.; Wu, Y.; Song, L. Influence of stealth aircraft dynamic RCS peak on radar detection probability. Chin. J. Aeronaut. 2023, 36, 137–145. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Z.; Huang, P.; Liu, Z. A New Method for Analyzing Integrated Stealth Ability of Penetration Aircraft. Chin. J. Aeronaut. 2010, 23, 187–193. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.; Hong, S.; Wu, Z.; Liu, Z. A new assessment method for the comprehensive stealth performance of penetration aircrafts. Aerosp. Sci. Technol. 2011, 15, 511–518. [Google Scholar] [CrossRef]
- Pachter, M.; Hebert, J. Minimizing Radar Exposure in Air Vehicle Path Planning. IFAC Proc. Vol. 2002, 35, 181–185. [Google Scholar] [CrossRef]
- Luo, J.; Liang, Q.; Li, H. UAV penetration mission path planning based on improved holonic particle swarm optimization. J. Syst. Eng. Electron. 2023, 34, 197–213. [Google Scholar] [CrossRef]
- Peng, Z.-H.; Sun, L.; Chen, J. Online path planning for UAV low-altitude penetration based on an improved differential evolution algorithm. Chin. J. Eng. 2012, 34, 96–101. [Google Scholar]
- Zhu, W.; Duan, H. Chaotic predator–prey biogeography-based optimization approach for UCAV path planning. Aerosp. Sci. Technol. 2014, 32, 153–161. [Google Scholar] [CrossRef]
- Xu, Q.; Ge, J.; Yang, T.; Sun, X. A trajectory design method for coupling aircraft radar cross-section characteristics. Aerosp. Sci. Technol. 2020, 98, 105653. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, J.; Wu, J.; Zhu, X. Efficient and optimal penetration path planning for stealth unmanned aerial vehicle using minimal radar cross-section tactics and modified A-Star algorithm. ISA Trans. 2023, 134, 42–57. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Xiong, J.; Wang, Y.; Huang, J.P. Research on Target Detection Probability Model of Penetration Plane During the Final Stage. In Proceedings of the 7th International Conference on Education, Management, Information and Mechanical Engineering (EMIM 2017), Shenyang, China, 28–30 April 2017; Atlantis Press: Amsterdam, The Netherlands, 2017; pp. 725–731. [Google Scholar]
- Najafi, M.; Schmauss, B.; Schober, R. Intelligent reflecting surfaces for free space optical communication systems. IEEE Trans. Commun. 2021, 69, 6134–6151. [Google Scholar] [CrossRef]
- Asvestas, J.S. The physical optics method in electromagnetic scattering. J. Math. Phys. 1980, 21, 290–299. [Google Scholar] [CrossRef]
- Ergül, Ö.; Gürel, L. Benchmark solutions of large problems for evaluating accuracy and efficiency of electromagnetics solvers. In Proceedings of the 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, DC, USA, 3–8 July 2011; IEEE: New York, NY, USA, 2011; pp. 179–182. [Google Scholar]
- Landry, N.; Goodrich, H.; Inacker, H.; Lavedan, L. Practical Aspects of Phase-Shifter and Driver Design for a Tactical Multifunction Phased-Array RADAR System. IEEE Trans. Microw. Theory Tech. 1974, 22, 617–625. [Google Scholar] [CrossRef]
- Eliasson, P.; Peng, S.-H. Drag prediction for the DLR-F6 wing-body configuration using the EDGE solver. J. Aircr. 2008, 45, 837–847. [Google Scholar] [CrossRef]
- Yuan, C.; Ma, D.; Jia, Y.; Yang, M.; Zhang, L. Numerical analysis of pitch-break and all moving wingtip aileron of lambda wing configuration. Aerosp. Sci. Technol. 2023, 141, 108508. [Google Scholar] [CrossRef]
- Liu, X.; Wang, T.; Chen, J.; Wu, J. Efficient configuration calibration in airborne distributed radar systems. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 1799–1817. [Google Scholar] [CrossRef]
- Burns, R.B.; Dobson, C.B. Statistical Significance, Experimental Psychology: Research Methods and Statistics; Springer: Dordrecht, The Netherlands, 1981; pp. 52–56. [Google Scholar]
- Vose, M.D. The Simple Genetic Algorithm: Foundations and Theory; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
Radar Parameter | Value |
---|---|
Frequency | 2 GHz (S) |
Polarization | VV |
SNR | 30 dB |
Pulse width | 0.1 μs |
Peak power | 6.4 MW |
Antenna gain | 40 dB |
Transmitter internal loss | 1 dB |
Receiver noise temperature | 290 K |
Scan rate (above horizon) | 12 scan/min |
Flight State Parameter | Value |
---|---|
Static pressure | 26,420 Pa |
Mach number | 0.65 |
Altitude | 10 km |
Density | 0.412 kg/m3 |
Temperature | 223.15 K |
Wing Variables | Baseline | Minimum | Maximum |
---|---|---|---|
Wing sweep angle/° | 37 | 30 | 40 |
Wing aspect ratio | 3.5 | 3 | 4.5 |
Wingtip twist angle/° | 5 | 0 | 5 |
Trailing edge turning point/% | 50% | 30.0 | 55.0 |
Wing Variables | Baseline | AeroStealthOpt |
---|---|---|
Wing sweep angle/° | 37 | 39 |
Wing aspect ratio | 3.5 | 4.480 |
Wingtip twist angle/° | 5 | 1.142 |
Trailing edge turning point/% | 50% | 30.79% |
Radar detection probability | 14.49% | 14.24% |
Maximum flight sorties | 29.42 | 29.96 |
Lift–drag ratio | 17.15 | 19.24 |
Penetration efficiency coefficient | 504.54 | 576.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, C.; Ma, D.; Jia, Y.; Zhang, L. Stealth Unmanned Aerial Vehicle Penetration Efficiency Optimization Based on Radar Detection Probability Model. Aerospace 2024, 11, 561. https://doi.org/10.3390/aerospace11070561
Yuan C, Ma D, Jia Y, Zhang L. Stealth Unmanned Aerial Vehicle Penetration Efficiency Optimization Based on Radar Detection Probability Model. Aerospace. 2024; 11(7):561. https://doi.org/10.3390/aerospace11070561
Chicago/Turabian StyleYuan, Chengen, Dongli Ma, Yuhong Jia, and Liang Zhang. 2024. "Stealth Unmanned Aerial Vehicle Penetration Efficiency Optimization Based on Radar Detection Probability Model" Aerospace 11, no. 7: 561. https://doi.org/10.3390/aerospace11070561
APA StyleYuan, C., Ma, D., Jia, Y., & Zhang, L. (2024). Stealth Unmanned Aerial Vehicle Penetration Efficiency Optimization Based on Radar Detection Probability Model. Aerospace, 11(7), 561. https://doi.org/10.3390/aerospace11070561