Diagnosis of Mechanical Rotor Faults in Drones Using Functional Gaussian Mixture Classifier
Abstract
:1. Introduction
- Construction of Bayesian functional model using splines,
- Binary and three class classifier that recognizes the type of damage the propeller has suffered
2. Materials
2.1. Data Collection
2.2. Preprocessing
3. Methods
3.1. Bayesian Functional Spline Models
3.2. Gaussian Mixture Model Classifier
3.3. Stan
4. Results
4.1. Binary Classifier
4.2. Three-Class Classifier
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BGMM | Bayesian Gaussian Mixture Model |
IMU | Inertial Measurement Unit |
FDA | Functional data analysis |
HMC | Hamiltonian Monte Carlo |
NUTS | No-U-Turn Sampler |
MCMC | Markov Chain Monte Carlo |
WAIC | Watanabe–Akaike information criterion |
UAV | Unnamed Aerial Vehicle |
References
- Cabahug, J.; Eslamiat, H. Failure Detection in Quadcopter UAVs Using K-Means Clustering. Sensors 2022, 22, 6037. [Google Scholar] [CrossRef] [PubMed]
- Raja, V.; Solaiappan, S.K.; Rajendran, P.; Madasamy, S.K.; Jung, S. Conceptual Design and Multi-Disciplinary Computational Investigations of Multirotor Unmanned Aerial Vehicle for Environmental Applications. Appl. Sci. 2021, 11, 8364. [Google Scholar] [CrossRef]
- Harras, M.S.; Saleh, S.; Battseren, B.; Hardt, W. Vision-based Propeller Damage Inspection Using Machine Learning. Embed. Selforganising Syst. 2023, 10, 43–47. [Google Scholar] [CrossRef]
- Iannace, G.; Ciaburro, G.; Trematerra, A. Fault Diagnosis for UAV Blades Using Artificial Neural Network. Robotics 2019, 8, 59. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Z.; Zheng, M. An Audio-Based Fault Diagnosis Method for Quadrotors Using Convolutional Neural Network and Transfer Learning. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; pp. 1367–1372. [Google Scholar] [CrossRef]
- Rangel-Magdaleno, J.d.J.; Ureña-Ureña, J.; Hernández, A.; Perez-Rubio, C. Detection of unbalanced blade on UAV by means of audio signal. In Proceedings of the 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 14–16 November 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Yap, Y.K. Structural Health Monitoring for Unmanned Aerial Systems. Master’s Thesis, EECS Department, University of California, Berkeley, CA, USA, 2014. Available online: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-70.html (accessed on 5 January 2024).
- Cai, B.; Sun, X.; Wang, J.; Yang, C.; Wang, Z.; Kong, X.; Liu, Z.; Liu, Y. Fault detection and diagnostic method of diesel engine by combining rule-based algorithm and BNs/BPNNs. J. Manuf. Syst. 2020, 57, 148–157. [Google Scholar] [CrossRef]
- Cai, B.; Fan, H.; Shao, X.; Liu, Y.; Liu, G.; Liu, Z.; Ji, R. Remaining useful life re-prediction methodology based on Wiener process: Subsea Christmas tree system as a case study. Comput. Ind. Eng. 2021, 151, 106983. [Google Scholar] [CrossRef]
- Cai, B.; Hao, K.; Wang, Z.; Yang, C.; Kong, X.; Liu, Z.; Ji, R.; Liu, Y. Data-driven early fault diagnostic methodology of permanent magnet synchronous motor. Expert Syst. Appl. 2021, 177, 115000. [Google Scholar] [CrossRef]
- Baranowski, J.; Grobler-Dębska, K.; Kucharska, E. Recognizing VSC DC Cable Fault Types Using Bayesian Functional Data Depth. Energies 2021, 14, 5893. [Google Scholar] [CrossRef]
- Wan, H.; Wang, H.; Scotney, B.; Liu, J. A Novel Gaussian Mixture Model for Classification. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 3298–3303. [Google Scholar] [CrossRef]
- Jarzyna, K.; Rad, M.; Piatek, P.; Baranowski, J. Bayesian Fault Diagnosis for Induction Motors During Startup in Frequency Domain. In Proceedings of the Advanced, Contemporary Control-Proceedings of the XXI Polish Control Conference, Gliwice, Poland, 26–29 June 2023; Pawelczyk, M., Bismor, D., Ogonowski, S., Kacprzyk, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; Volume 709, pp. 14–24. [Google Scholar] [CrossRef]
- Wang, J.L.; Chiou, J.M.; Müller, H.G. Functional Data Analysis. Annu. Rev. Stat. Its Appl. 2016, 3, 257–295. [Google Scholar] [CrossRef]
- Aneiros, G.; Cao, R.; Fraiman, R.; Genest, C.; Vieu, P. Recent advances in functional data analysis and high-dimensional statistics. J. Multivar. Anal. 2019, 170, 3–9. [Google Scholar] [CrossRef]
- Poręba, J.; Baranowski, J. Functional Logistic Regression for Motor Fault Classification Using Acoustic Data in Frequency Domain. Energies 2022, 15, 5535. [Google Scholar] [CrossRef]
- Lee, J.; Shin, D.; Ryu, H.; Lee, D.; Shim, D.H. Fault Tolerant Adaptive Control using Time Delay Control Scheme under Motor Faults of Octocopter. In Proceedings of the 2018 7th International Conference on Systems and Control (ICSC), Valencia, Spain, 24–26 October 2018; pp. 123–128. [Google Scholar] [CrossRef]
- Raška, M. Framework for Customizable Autopilot Solutions. Master’s Thesis, Univerzita Karlova, Matematicko-Fyzikální Fakulta, Prague, Czech Republic, 2017. [Google Scholar]
- Lee, K.J.; Guillemot, L.; Yue, Y.L.; Kramer, M.; Champion, D.J. Application of the Gaussian mixture model in pulsar astronomy-pulsar classification and candidates ranking for the Fermi 2FGL catalogue: Application of the Gaussian mixture model. Mon. Not. R. Astron. Soc. 2012, 424, 2832–2840. [Google Scholar] [CrossRef]
- Stan Development Team. Stan User’s Guide. 2024. Available online: https://mc-stan.org/users/documentation/ (accessed on 5 January 2024).
- Carpenter, B.; Gelman, A.; Hoffman, M.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A Probabilistic Programming Language. J. Stat. Softw. Artic. 2017, 76, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Cao, N.; Lu, H.; Gao, F.; Xue, B.; Zhou, Y. Classification and fusion algorithm of imbalanced data set based on Gaussian Mixture Model. In Proceedings of the 2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP), Hangzhou, China, 8–10 July 2022; pp. 928–933. [Google Scholar] [CrossRef]
- Haque, S.R.; Kormokar, R.; Zaman, A.U. Drone ground control station with enhanced safety features. In Proceedings of the 2017 2nd International Conference for Convergence in Technology (I2CT), Mumbai, India, 7–9 April 2017; pp. 1207–1210. [Google Scholar] [CrossRef]
- Tan, R.; Cong, T.; Ottewill, J.R.; Baranowski, J.; Thornhill, N.F. An on-line framework for monitoring nonlinear processes with multiple operating modes. J. Process Control 2020, 89, 119–130. [Google Scholar] [CrossRef]
Component | Details | Location |
---|---|---|
Flight Controller | Orange Cube-CubePilot-Australia | Drone |
Satellite Navigation System | GNSS HERE 3+-CubePilot -Australia | Drone |
Communication Module | RFD900x-RFDesign-Australia | Drone |
Camera and Video Transmitter | DJI Air Unit 03 Set-DJI-China | Drone |
Two Electronic Speed Controllers (ESCs) | T-Motor Velox 45 A-T-Motor-China | Drone |
Eight Motors | T-MOTOR 4006 380 kV-T-Motor-China | Drone |
Converter | D24V50F5-Pololu-United States of America | Drone |
Capacitor | Capacitor 50 V 1500-Jamicon-Poland | Drone |
Battery | Tattu 6S 10,000 mah-Grepow-China | Drone |
Ground Computer | Ground Station | |
Transmitter | FrSky Taranis Q X7-FrSky-China | Ground Station |
Communication Module | RFD900x-RFDesign-Australia | Ground Station |
Video Receiver | DJI Goggles V2-DJI-China | Ground Station |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartoszewski, B.; Jarzyna, K.; Baranowski, J. Diagnosis of Mechanical Rotor Faults in Drones Using Functional Gaussian Mixture Classifier. Aerospace 2024, 11, 743. https://doi.org/10.3390/aerospace11090743
Bartoszewski B, Jarzyna K, Baranowski J. Diagnosis of Mechanical Rotor Faults in Drones Using Functional Gaussian Mixture Classifier. Aerospace. 2024; 11(9):743. https://doi.org/10.3390/aerospace11090743
Chicago/Turabian StyleBartoszewski, Bartosz, Kacper Jarzyna, and Jerzy Baranowski. 2024. "Diagnosis of Mechanical Rotor Faults in Drones Using Functional Gaussian Mixture Classifier" Aerospace 11, no. 9: 743. https://doi.org/10.3390/aerospace11090743
APA StyleBartoszewski, B., Jarzyna, K., & Baranowski, J. (2024). Diagnosis of Mechanical Rotor Faults in Drones Using Functional Gaussian Mixture Classifier. Aerospace, 11(9), 743. https://doi.org/10.3390/aerospace11090743