Robust Onboard Orbit Determination Through Error Kalman Filtering
Abstract
:1. Introduction
2. Mathematical Background
2.1. GNSS Receiver Model
- IAU2000B: This retains about 80 coefficients in the nutation series and provides the CIP coordinates with a worst-case accuracy of 1 mas with respect to the IAU 2006/2000A model during the 1995–2050 period.
- CPNc: This delivers a worst-case accuracy of about 16 mas throughout 1995–2050, leaving only 42 coefficients in the series.
- CPNd: By keeping only four coefficients of the entire series, a 1 arcsec worst-case accuracy can be achieved between 1995 and 2050. Additionally, at this level of accuracy, both the CIO locator s as well as the polar motion matrix can be neglected.
2.2. Inertial Navigation System Model
3. Onboard Orbit Determination Algorithm
3.1. Derivation of the Error-State Kalman Filter
3.2. Derivation of the Jacobian Matrices
3.3. Onboard Orbit Determination During GNSS Outages
Ground Updates of the Onboard Orbit Determination
3.4. Delay Handling in Real-Time Implementation
4. Orbit Determination Performance
4.1. LEO Nominal Scenario
4.2. GEO Orbit Nominal Scenario
4.3. GNSS Outage Scenarios
5. Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EOPs | Earth orientation parameters |
FES | Functional engineering simulator |
GCRF | Geocentric Celestial Reference Frame |
GEO | Geostationary Earth orbit |
GNC | Guidance, navigation and control |
GNSS | Global navigation satellite system |
MEO | Medium Earth orbit |
IMU | Inertial measurement unit |
INS | Inertial navigation system |
ITRF | International Terrestrial Reference Frame |
LEO | Low Earth orbit |
MIL | Model-in-the-loop |
SGPs | Simplified general perturbations |
ODS | Orbit determination system |
RAAN | Right ascension of the ascending node |
TLE | Two-line element |
References
- Colagrossi, A.; Lavagna, M.; Bertacin, R. An Effective Sensor Architecture for Full-Attitude Determination in the HERMES Nano-Satellites. Sensors 2023, 23, 2393. [Google Scholar] [CrossRef] [PubMed]
- Moya, D.; Elchynski, J. Evaluation of the World’s Smallest Integrated Embedded GPS/INS, the H-764G. In Proceedings of the 1993 National Technical Meeting of The Institute of Navigation, San Francisco, CA, USA, 20–22 January 1993. [Google Scholar]
- Ebinuma, T.; Mikawa, Y.; Nakasuka, S. Quasi-monostatic algorithm for GNSS-SAR. In Proceedings of the Conference 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 23–27 September 2013; pp. 164–166. [Google Scholar]
- Um, J. Relative Navigation and Attitude Determination Using a GPS/INS Integrated System Near the International Space Station. Ph.D. Thesis, The University of Texas, Austin, TX, USA, 2001. [Google Scholar]
- Mao, X.; Arnold, D.; Girardin, V.; Villiger, A.; Jäggi, A. Dynamic GPS-based LEO orbit determination with 1 cm precision using the Bernese GNSS Software. Adv. Space Res. 2021, 67, 788–805. [Google Scholar] [CrossRef]
- Mao, X.; Arnold, D.; Kalarus, M.; Padovan, S.; Jäggi, A. GNSS-based precise orbit determination for maneuvering LEO satellites. GPS Solut. 2023, 27, 147. [Google Scholar] [CrossRef]
- Selvan, K.; Siemuri, A.; Kuusniemi, H.; Välisuo, P. A Review on Precise Orbit Determination of Various LEO Satellites. In Proceedings of the WiP International Conference on Localization and GNSS (ICL-GNSS 2021), CEUR, Tampere, Finland, 1–3 June 2021. [Google Scholar]
- Cho, C.H.; Lee, B.S.; Lee, J.S.; Kim, J.H.; Choi, K.H. NORAD TLE type orbit determination of LEO satellites using GPS navigation solutions. J. Astron. Space Sci. 2002, 19, 197–206. [Google Scholar] [CrossRef]
- Coffee, B.; Bishop, R.; Cahoy, K. Propagation of CubeSats in LEO using NORAD two line element sets: Accuracy and update frequency. In Proceedings of the AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, MA, USA, 19–22 August 2013; p. 4944. [Google Scholar]
- Park, J.; Shim, H.; Bae, Y.; Kee, C.; Yu, S. Verification of Space GPS Receiver Navigation Performance Based on Full-Orbit Navigation Solutions of CubeSat. In Proceedings of the 2023 International Technical Meeting of The Institute of Navigation, Long Beach, CA, USA, 24–26 January 2023; pp. 252–261. [Google Scholar]
- Capuano, V.; Botteron, C.; Farine, P.A. GNSS performances for MEO, GEO, and HEO. In Proceedings of the Space Communications and Navigation Symposium-Space-Based Navigation Systems and Services, San Diego, CA, USA, 29–27 January 2013. [Google Scholar]
- Liu, H.; Cheng, X.; Tang, G.; Peng, J. GNSS performance research for MEO, GEO, and HEO. In Proceedings of the China Satellite Navigation Conference (CSNC) 2017 Proceedings: Volume III, Shanghai, China, 23–25 May 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 37–45. [Google Scholar]
- Capuano, V.; Shehaj, E.; Blunt, P.; Botteron, C.; Farine, P.A. High accuracy GNSS based navigation in GEO. Acta Astronaut. 2017, 136, 332–341. [Google Scholar] [CrossRef]
- Guan, M.; Xu, T.; Li, M.; Gao, F.; Mu, D. Navigation in geo, heo, and lunar trajectory using multi-gnss sidelobe signals. Remote Sens. 2022, 14, 318. [Google Scholar] [CrossRef]
- Moonseok, C.; Jongsun, A.; Sangkyung, S.; Jaegyu, J.; Lee, Y.J. Loosely Coupled GPS/INS System Based on Inter-Satellite Link in Urban Areas. In Proceedings of the ION 2017 Pacific PNT Meeting, Honolulu, HI, USA, 1–4 May 2017. [Google Scholar]
- Soloviev, A. Gnss-ins integration. In Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 2. [Google Scholar]
- Petit, G.; Luzum, B. IERS Conventions (2010). 2010. Available online: https://www.iers.org/SharedDocs/Publikationen/EN/IERS/Publications/tn/TechnNote36/tn36.pdf?__blob=publicationFile&v=1 (accessed on 15 December 2024).
- Capitaine, N.; Wallace, P. Concise CIO based precession-nutation formulations. Astron. Astrophys. 2008, 478, 277–284. [Google Scholar] [CrossRef]
- Gaylor, D.; Lightsey, E.G. GPS/INS Kalman Filter Design for Spacecraft Operating in the Proximity of International Space Station. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, TX, USA, 11–14 August 2003. [Google Scholar] [CrossRef]
- Flohrer, T.; Krag, H.; Klinkrad, H. Assessment and categorization of TLE orbit errors for the US SSN catalogue. Risk 2008, 8, 10–11. [Google Scholar]
- Wang, R.; Liu, J.; Zhang, Q. Propagation errors analysis of TLE data. Adv. Space Res. 2009, 43, 1065–1069. [Google Scholar] [CrossRef]
- Guo, X.-Z.; Li, J.-W.; Shen, M.; Gao, P.-Q.; Yang, D.-T.; Yu, H.-H.; Zhao, Y. Analysis on Propagation Accuracy of Deep-Space TLE Objects Affected by Solar/Lunar Orbit Calculation. Chin. Astron. Astrophys. 2023, 47, 221–235. [Google Scholar]
Parameter | Value |
---|---|
Simulation start date | 1 April 2020, 12:30:00 p.m. UTC |
Simulation duration | 95 min |
Initial state distribution () | Semi-major axis: 6921 km ± 1 km |
Eccentricity: 0.001 ± 0.0 | |
Inclination: 98.88 deg ± 0.4 mdeg | |
RAAN: 324.12 deg ± 0.4 mdeg | |
Argument of perigee: 337.85 deg ± 0.4 mdeg | |
True anomaly: 17.80 deg ± 0.4 mdeg | |
Satellite mass | 17.5 kg |
Satellite dimensions | Spacecraft body: 0.1 m × 0.1 m × 0.3 m |
Solar arrays: 0.3 m × 0.2 m | |
Drag coefficient | 2.2 ± 0.18 |
Optical coefficients (1) | Diffusion : 0.1 ± 0.017 |
Specular : 0.1 ± 0.017 | |
GNSS bias () | 10 cm |
GNSS noise () | 1.5 m |
GNSS delay () | 15 ms ± 7.5 ms |
GNSS delay noise () | 1 ms ± 0.5 ms |
IMU static bias () | 270 μg |
IMU velocity random walk () | 0.008 m/s/ |
IMU bias stability () | 3.7 μg |
IMU scale factors () | Linear: 34.34 ppm |
Asimmetry: 1 ppm | |
Nonlinearity: 3000 ppm | |
Initial filter uncertainty () | Position (x, y, z): 8000 km |
Velocity (x, y, z): 1000 m/s | |
Process noise covariance () | Position (x, y, z): 2 m |
Velocity (x, y, z): 0.1 m/s | |
Bias (x, y, z): 0.001 m/s2 | |
Measurement noise covariance () | GNSS position (x, y, z): 5 m |
GNSS velocity (x, y, z): 0.5 m/s | |
Filter rate | 10 Hz |
Parameter | Value |
---|---|
Simulation duration | 12 h |
Initial state distribution () | Semi-major axis: 42,164 km ± 0.1 km |
Eccentricity: 0 ± 0.0001 | |
Inclination: 0 deg ± 0.4 mdeg | |
RAAN: 0 deg ± 0.4 mdeg | |
Argument of perigee: 0 deg ± 0.4 mdeg | |
True anomaly: 68.97 deg ± 0.4 mdeg | |
GNSS bias () | 1 m |
GNSS noise () | 250 m |
GNSS delay () | 50 ms ± 25 ms |
GNSS delay noise () | 20 ms ± 10 ms |
Initial filter uncertainty () | Position (x, y, z): 300 m |
Velocity (x, y, z): 10 m/s | |
Process noise covariance () | Position (x, y, z): 25 m |
Velocity (x, y, z): 0.2 m/s | |
Bias (x, y, z): 0.002 m/s2 | |
Measurement noise covariance () | GNSS position (x, y, z): 20 m |
GNSS velocity (x, y, z): 1 m/s | |
Filter rate | 10 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceresoli, M.; Colagrossi, A.; Silvestrini, S.; Lavagna, M. Robust Onboard Orbit Determination Through Error Kalman Filtering. Aerospace 2025, 12, 45. https://doi.org/10.3390/aerospace12010045
Ceresoli M, Colagrossi A, Silvestrini S, Lavagna M. Robust Onboard Orbit Determination Through Error Kalman Filtering. Aerospace. 2025; 12(1):45. https://doi.org/10.3390/aerospace12010045
Chicago/Turabian StyleCeresoli, Michele, Andrea Colagrossi, Stefano Silvestrini, and Michèle Lavagna. 2025. "Robust Onboard Orbit Determination Through Error Kalman Filtering" Aerospace 12, no. 1: 45. https://doi.org/10.3390/aerospace12010045
APA StyleCeresoli, M., Colagrossi, A., Silvestrini, S., & Lavagna, M. (2025). Robust Onboard Orbit Determination Through Error Kalman Filtering. Aerospace, 12(1), 45. https://doi.org/10.3390/aerospace12010045