Passive Radar-Based Parameter Estimation of Low Earth Orbit Debris Targets
Abstract
:1. Introduction
2. Passive Bistatic Radar and Mie Scattering
2.1. Forward Scatter Radar
2.2. Forward Scattering Phenomenology
3. The Baseline Crossing Event
3.1. BCE Signal Model
3.2. BCE Doppler
4. Self-Mixing Signal Processing
4.1. Single Target Case
4.2. Multiple Target Case
5. Simulations
5.1. Self-Mixing
5.2. Moving Target over a Forward Scatter Receiver Array
5.2.1. Single Receiver Geometry
5.2.2. Linear Receiver Array Geometry
5.2.3. FFT Results
5.2.4. Discrete Doppler Relationship
6. Effects of Noise and Interference
6.1. Interference
Target Masking
6.2. Thermal Noise
6.3. Frequency Estimation Errors
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kennewell, J.A.; Ba-Ngu, V. An Overview of Space Situational Awareness. In Proceedings of the 16th International Conference on Information Fusion, Istanbul, Turkey, 9–12 July 2013; pp. 1029–1036. [Google Scholar]
- European Space Agency. Space Debris by the Numbers. Available online: https://www.esa.int/Space_Safety/Space_Debris/Space_debris_by_the_numbers (accessed on 22 November 2024).
- National Aeronautics and Space Administration. Space Debris. Available online: https://www.nasa.gov/headquarters/library/find/bibliographies/space-debris/ (accessed on 22 November 2024).
- Hoerber, T.; Oikonomou, I. From space situational awareness to space domain awareness. In The Militarization of European Space Policy; Hoerber, T., Oikonomou, I., Eds.; Taylor & Francis: New York, NY, USA, 2023; Volume 1. [Google Scholar]
- Johnson, N. Origin of the Inter-Agency Space Debris Coordination Committee. Available online: https://ntrs.nasa.gov/api/citations/20150003818/downloads/20150003818.pdf (accessed on 3 January 2025).
- Metz, M. What’s IADC. Available online: https://www.iadc-home.org/what_iadc (accessed on 3 January 2025).
- United Nations. Technical Report on Space Debris. Available online: https://www.iadc-home.org/references/pdfview/id/69 (accessed on 3 January 2025).
- IADC Working Group 4. Support to the IADC Space Debris Mitigation Guidelines. Available online: https://www.iadc-home.org/documents_public/view/search_field/eNortjI2tlJy1CsuTcpKTS7RdtTLS8xNBVIlielAMjk_ryQ1r6RYyRpcMAypDUU~/page/2/id/173#u (accessed on 3 January 2025).
- Weeden, B. US Policy and Capabilities on SSA. Available online: https://swfound.org/media/206348/weeden-us-policy-and-capabilities-for-ssa.pdf (accessed on 23 November 2024).
- SST Corporation. EU Space Surveillance and Tracking Service Portfolio. Available online: https://www.satcen.europa.eu/keydocuments/EUSST_Service_Portfolio622b4b653172450001cfa321.pdf (accessed on 23 November 2024).
- Losacco, M.; Di Lizia, P.; Mauro, M.; Bianchi, G.; Pupillo, G.; Mattana, A.; Naldi, G.; Bortolotti, C.; Roma, M.; Schiaffino, M.; et al. The multibeam radar sensor BIRALES: Performance assessment for space surveillance and tracking. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–13. [Google Scholar] [CrossRef]
- Ender, J.; Leushacke, L.; Brenner, A.; Wilden, H. Radar Techniques for Space Situational Awareness. In Proceedings of the 2011 12th International Radar Symposium (IRS), Leipzig, Germany, 7–9 September 2011; pp. 21–26. [Google Scholar]
- Manresa Ortiz, S. Feasibility Study of Space Debris Detection by Small Optical Telescopes. Bachelor’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2022. [Google Scholar]
- Dequal, D.; Agnesi, C.; Sarrocco, D.; Calderaro, L.; Amato, L.S.; de Cumis, M.S.; Vallone, G.; Villoresi, P.; Luceri, V.; Bianco, G. 100 kHz satellite laser ranging demonstration at Matera laser ranging observatory. J. Geod. 2021, 95, 26. [Google Scholar] [CrossRef]
- LeoLabs. Our Radars. Available online: https://leolabs.space/radars/ (accessed on 24 November 2024).
- Tingay, S.J.; Kaplan, D.L.; McKinley, B.; Briggs, F.; Wayth, R.B.; Hurley-Walker, N.; Kennewell, J.; Smith, C.; Zhang, K.; Arcus, W.; et al. On the detection and tracking of space debris using the Murchison widefield array. I. Simulations and test observations demonstrate feasibility. Astron. J. 2013, 146, 103–111. [Google Scholar] [CrossRef]
- Fränken, D.; Ott, T.; Lutz, S.; Hoffmann, F.; Samczynski, P.; Plotka, M.; Drozka, M.; Schupbach, C.; Mathews, Z.; Welschen, S.; et al. Integrating multiband active and passive radar for enhanced situational awareness. IEEE Aerosp. Electron. Syst. Mag. 2022, 37, 36–49. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology. Spectrum Sharing. Available online: https://www.nist.gov/advanced-communications/spectrum-sharing (accessed on 24 November 2024).
- Popovski, P.; Yomo, H.; Prasad, R. Strategies for adaptive frequency hopping in the unlicensed bands. IEEE Wirel. Commun. 2006, 13, 60–67. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Debasish, S. Sequence-Based channel hopping algorithms for dynamic spectrum sharing in cognitive radio networks. IEEE J. Sel. Areas Commun. 2016, 34, 2814–2828. [Google Scholar] [CrossRef]
- Hu, W.; Willkomm, D.; Abusubaih, M.; Gross, J.; Vlantis, G.; Gerla, M.; Wolisz, A. Cognitive radios for dynamic spectrum access—Dynamic frequency hopping communities for efficient IEEE 802.22 operation. IEEE Commun. Mag. 2007, 45, 80–87. [Google Scholar] [CrossRef]
- Deepa, S.; Arafat, I.; Priya, M.S.; Saravanan, S. An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications. Sci. Temper 2023, 14, 1301–1307. [Google Scholar] [CrossRef]
- Griffiths, H.; Baker, C.J. An Introduction to Passive Radar; Artech House: Norwood, MA, USA, 2017. [Google Scholar]
- Farina, A. Green Radar State of Art: Theory, Practice and Way Ahead. Available online: https://ieeetv.ieee.org/green-radar-state-of-art-theory-practice-and-way-ahead (accessed on 22 November 2024).
- Černjakov, M.V.; Nezline, D.V. Bistatic Radar: Principles and Practice; John Wiley & Sons: West Sussex, UK, 2007. [Google Scholar]
- Baird, C.S. Since One Satellite Can See Half of the Earth, Why Do We Need More Than Two Satellites in a Given Network? Available online: https://wtamu.edu/~cbaird/sq/2013/05/10/since-one-satellite-can-see-half-of-the-earth-why-do-we-need-more-than-two-satellites-in-a-given-network/ (accessed on 24 November 2024).
- Cherniakov, M.; Moccia, A. Bistatic Radar: Emerging Technology; John Wiley & Sons: West Sussex, UK, 2008. [Google Scholar]
- Gashinova, M.; Daniel, L.; Sizov, V.; Hoare, E.; Cherniakov, M. Phenomenology of Doppler forward scatter radar for surface targets observation. IET Radar Sonar Navig. 2013, 7, 422–432. [Google Scholar] [CrossRef]
- Raja Abdullah, R.S.A.; Aziz, N.H.A.; Rashid, N.E.A.; Salah, A.A.; Hashim, F. Analysis on target detection and classification in LTE based passive forward scattering radar. Sensors 2016, 16, 1607. [Google Scholar] [CrossRef] [PubMed]
- Wörmann, J.; Ebeling, S.; Schoch, B.; Kallfass, I. Design of a wideband E-band radar frontend for a novel incoherent self-mixing radar principle. In Proceedings of the 2022 IEEE/MTT-S International Microwave Symposium—IMS 2022, Denver, CO, USA, 19–24 June 2022; pp. 538–541. [Google Scholar] [CrossRef]
- Balanis, C.A. Advanced Engineering Electromagnetics, 2nd ed.; John Wiley & Sons: West Sussex, UK, 2012. [Google Scholar]
- Gashinova, M.; Daniel, L.; Hoare, E.; Sizov, V.; Kabakchiev, K.; Cherniakov, M. Signal characterisation and processing in the forward scatter mode of bistatic passive coherent location systems. EURASIP J. Adv. Signal Process. 2013, 2013, 36. [Google Scholar] [CrossRef]
- Sorensen, C.M.; Fischbach, D.J. Patterns in Mie scattering. Opt. Comms 2000, 173, 145–153. [Google Scholar] [CrossRef]
- Ai, X.; Zheng, Y.; Xu, Z.; Zhao, F.; Xiao, S. Characteristics of target crossing the baseline in FSR: Experiment results. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3503105. [Google Scholar] [CrossRef]
- Malanowski, M. Signal Processing for Passive Bistatic Radar; Artech House: Norwood, MA, USA, 2019. [Google Scholar]
- Federal Communications Commission. GPS L1 Link Budget. Available online: https://apps.fcc.gov/els/GetAtt.html?id=110032&x= (accessed on 22 November 2024).
- Henry, J.K.A.; Narayanan, R.M. Demonstration of the frequency and correlation behavior of a forward scatter baseline crossing event. In Proceedings of the Sensors and Systems for Space Applications XVII, Oxon Hill, MD, USA, 23–25 April 2024; SPIE: Bellingham, WA, USA, 2024; Volume 13062. [Google Scholar] [CrossRef]
- Henry, J.K.A.; Narayanan, R.M.; Singla, P.; Blasch, E.P. Mie region radar cross-section of high-speed and rotational space debris. In Proceedings of the Sensors and Systems for Space Applications XV, Orlando, FL, USA, 3–7 April 2022; SPIE: Bellingham, WA, USA, 2022; Volume 12121. [Google Scholar] [CrossRef]
- Ettus Research. X300/X310. Available online: https://kb.ettus.com/X300/X310 (accessed on 5 January 2025).
- Tsui, J.B.-Y. Fundamentals of Global Positioning System Receivers: A Software Approach; John Wiley & Sons: New York, NY, USA, 2005; pp. 68–73. [Google Scholar]
- Henry, J.K.A.; Narayanan, R.M.; Singla, P. Design and processing of a self-mixing passive forward scatter radar fence for space debris tracking. In Proceedings of the Sensors and Systems for Space Applications XVI, Orlando, FL, USA, 2–4 May 2023; Volume 12546. [Google Scholar] [CrossRef]
- Van Trees, H.L. Optimum Array Processing; John Wiley & Sons: New York, NY, USA, 2003; pp. 59–63. [Google Scholar]
- Borre, K. A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach; Birkhauser: Boston, MA, USA, 2007; pp. 81–84. [Google Scholar]
- Richards, M.A. Principles of Modern Radar. Vol. I: Basic Principles; SciTech Publishing, Inc.: Raleigh, NC, USA, 2010; pp. 64–65. [Google Scholar]
Parameter | Value |
---|---|
km/s | |
400 km | |
20,200 km | |
0.1905 m | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henry, J.K.A.; Narayanan, R.M. Passive Radar-Based Parameter Estimation of Low Earth Orbit Debris Targets. Aerospace 2025, 12, 53. https://doi.org/10.3390/aerospace12010053
Henry JKA, Narayanan RM. Passive Radar-Based Parameter Estimation of Low Earth Orbit Debris Targets. Aerospace. 2025; 12(1):53. https://doi.org/10.3390/aerospace12010053
Chicago/Turabian StyleHenry, Justin K. A., and Ram M. Narayanan. 2025. "Passive Radar-Based Parameter Estimation of Low Earth Orbit Debris Targets" Aerospace 12, no. 1: 53. https://doi.org/10.3390/aerospace12010053
APA StyleHenry, J. K. A., & Narayanan, R. M. (2025). Passive Radar-Based Parameter Estimation of Low Earth Orbit Debris Targets. Aerospace, 12(1), 53. https://doi.org/10.3390/aerospace12010053