A Comparison of Modern Metaheuristics for Multi-Objective Optimization of Transonic Aeroelasticity in a Tow-Steered Composite Wing
Abstract
:1. Introduction
- The development of a design procedure for tow-steered aeroelastic optimization at transonic speed.
- A comparative performance study of recent MHs in tow-steered aeroelastic optimization at transonic speed.
2. Aeroelastic Design Problem
Algorithm 1. Calculation of orientation distribution of a tow-steered wing. |
Input: orientations at the root chord (), orientations at the tip chord (), FEA element data () - reshape the FEA element data () into groups of span elements () - get the total span elements (), minimum span location (), maximum span location () Compute span location () Output: |
Lift effectiveness: | |
Critical speed: | |
Displacement: | of half span; |
Stress: | (isotropic material); |
(composite material); | |
Buckling: | |
Boundary: |
= | The root thickness of the front spar (spar No. 1); | |
= | The root thickness of the rear spar (spar No. 2); | |
= | The root thickness of the ribs; | |
= | The tip thickness ratio of the front spar (spar no. 1); | |
= | The tip thickness ratio of the rear spar (spar No. 2); | |
= | The tip thickness ratio of the ribs; | |
= | The thicknesses at the root chord of the upper skin (the inner layer to the outer layer); | |
= | The thicknesses ratio at the tip chord of the upper skin (the inner layer to the outer layer); | |
= | Orientations at the root chord of the upper skin (the inner layer to the outer layer); | |
= | Orientations at the tip chord of the upper skin (the inner layer to the outer layer); | |
= | The thicknesses at the root chord of the lower skin (the inner layer to the outer layer); | |
= | The thicknesses ratio at the tip chord of the lower skin (the inner layer to the outer layer); | |
= | Orientations at the root chord of the lower skin (the inner layer to the outer layer); | |
= | Orientations at the tip chord of the lower skin (the inner layer to the outer layer). |
Algorithm 2. The tow-steered CRM wing aeroelastic function evaluation |
Input: design variable () - Load the aerodynamic results data including - Transform the design variable into the real geometric values including skin, rib and spar thicknesses and orientation of tow steer composite wing skin (detailed in Algorithm 1). - Create the finite element model, assemble the stiffness matrix and mass matrix - Solve the free vibration analysis and static analysis: - Free vibration analysis results including mode shape, lambda, omega. - Static analysis results including the structural deformation (), Tsai-Hill criteria stress () and Von-Mises stress (). - Solve the static aeroelastic: obtain the lift effectiveness () and divergence speed () - Solve for the flutter speed () using v-g-method - Compute the critical speed: - - Subject to - m (10% of half span) - MPa (isotropic material) - (composite material) - (Buckling factor constraint) - m/s (1.2 times flight speed) - - Output: , |
3. Numerical Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MOMVO | Multiobjective Multi-Verse Optimization. |
MOGOA | Multiobjective Grasshopper Optimization Algorithm. |
MOLA | Multiobjective Lichtenberg Algorithm. |
MOJS | Multiobjective Jellyfish Search. |
MOCryStAl | Multiobjective Crystal Structure Algorithm. |
MOMRFO | Multiobjective Manta Ray Foraging Optimizer. |
Lift effectiveness. | |
The actual lift force at flight speed operation. | |
The lift force at ground state shape with flight speed operation. | |
Flight speed. | |
Transverse displacement vector of the wing. | |
Maximum transverse displacement of the wing. | |
Stress in direction 1 of isotropic elements. | |
Stress in direction 2 of isotropic elements. | |
The Von Mises stress of isotropic elements. | |
The maximum Von Mises stress of isotropic elements. | |
The yield stress of isotropic elements. | |
Stress in direction 11 of composite elements. | |
Stress in direction 22 of composite elements. | |
Stress in direction 12 of composite elements. | |
Transverse displacement in direction 11 of composite elements. | |
Transverse displacement in direction 22 of composite elements. | |
Transverse displacement in direction 12 of composite elements. | |
Maximum Tsai–Hill failure index of composite elements. | |
Buckling factor. | |
A vector of design variables. | |
The lower bounds of design variables. | |
The upper bounds of design variables. |
References
- Mcdonald, R.A.; German, B.J.; Takahashi, T.; Bil, C.; Anemaat, W.; Chaput, A.; Vos, R.; Harrison, N. Future aircraft concepts and design methods. Aeronaut. J. 2022, 126, 92–124. [Google Scholar] [CrossRef]
- Sarlioglu, B.; Morris, C.T. More Electric Aircraft: Review, Challenges, and Opportunities for Commercial Transport Aircraft. IEEE Trans. Transp. Electrif. 2015, 1, 54–64. [Google Scholar] [CrossRef]
- Ma, Y.; Elham, A. Designing high aspect ratio wings: A review of concepts and approaches. Prog. Aerosp. Sci. 2024, 145, 100983. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Zhang, J.; Yao, K.; Luo, M.; Liu, Y. Towards the Design of Future Aircraft: A Critical Review on the Tools and Methodologies. Aerosp. Res. Commun. 2024, 2, 13096. [Google Scholar] [CrossRef]
- Boden, F.; Barth, H.P.; Hein, S.; Heitmann, D.; Kirmse, T.; Klein, C.; Krüger, W.; Lemarechal, J.; Norambuena, M.; Schäfer, D.; et al. Recent developments of common numerical methods and common experimental means within the framework of the large passenger aircraft program. CEAS Aeronaut. J. 2023, 14, 281–293. [Google Scholar] [CrossRef]
- Elmeseiry, N.; Alshaer, N.; Ismail, T. A Detailed Survey and Future Directions of Unmanned Aerial Vehicles (UAVs) with Potential Applications. Aerospace 2021, 8, 363. [Google Scholar] [CrossRef]
- Rabiu, L.; Ahmad, A.; Gohari, A. Advancements of Unmanned Aerial Vehicle Technology in the Realm of Applied Sciences and Engineering: A Review. J. Adv. Res. Appl. Sci. Eng. Technol. 2024, 40, 74–95. [Google Scholar] [CrossRef]
- Missili, A.; Mirabella, C.; Tuccillo, M.; Della Vecchia, P. A Model-Based Systems Engineering Digital Certification Framework for General Aviation Aircraft. Aerotec. Missili Spaz. 2024. [Google Scholar] [CrossRef]
- Cook, S.P. Digital Airworthiness Certification: Opportunities for Unmanned Aircraft Systems. In Proceedings of the 2024 International Conference on Unmanned Aircraft Systems (ICUAS), Chania, Greece, 4–7 June 2024; pp. 1432–1437. [Google Scholar]
- Lambert, T.; Razak, N.A.; Dimitriadis, G. Vortex Lattice Simulations of Attached and Separated Flows around Flapping Wings. Aerospace 2017, 4, 22. [Google Scholar] [CrossRef]
- Parenteau, M.; Laurendeau, E. A general modal frequency-domain vortex lattice method for aeroelastic analyses. J. Fluids Struct. 2020, 99, 103146. [Google Scholar] [CrossRef]
- Hang, X.; Su, W.; Fei, Q.; Jiang, D. Analytical sensitivity analysis of flexible aircraft with the unsteady vortex-lattice aerodynamic theory. Aerosp. Sci. Technol. 2020, 99, 105612. [Google Scholar] [CrossRef]
- Joshi, H.; Thomas, P. Review of vortex lattice method for supersonic aircraft design. Aeronaut. J. 2023, 127, 1869–1903. [Google Scholar] [CrossRef]
- Dagilis, M.; Kilikevičius, S. Aeroelasticity Model for Highly Flexible Aircraft Based on the Vortex Lattice Method. Aerospace 2023, 10, 801. [Google Scholar] [CrossRef]
- Gulizzi, V.; Benedetti, I. Computational aeroelastic analysis of wings based on the structural discontinuous Galerkin and aerodynamic vortex lattice methods. Aerosp. Sci. Technol. 2024, 144, 108808. [Google Scholar] [CrossRef]
- Albano, E.; Hodden, W.P. A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows. AIAA J. 2012, 7, 279–285. [Google Scholar] [CrossRef]
- Schmidt, H.; Neumann, J.; Mai, H. Analysis of forced response in a wind tunnel based on Doublet-Lattice method. CEAS Aeronaut. J. 2011, 2, 271–277. [Google Scholar] [CrossRef]
- Martínez, M.S.; Dimitriadis, G. Subsonic source and doublet panel methods. J. Fluids Struct. 2022, 113, 103624. [Google Scholar] [CrossRef]
- Gao, W.; Liu, Y.; Li, Q.; Lu, B. Aerodynamic Modeling and Simulation of Multi-Lifting Surfaces Based on the Unsteady Vortex Lattice Method. Aerospace 2023, 10, 203. [Google Scholar] [CrossRef]
- Boutet, J.; Dimitriadis, G. Unsteady Lifting Line Theory Using the Wagner Function for the Aerodynamic and Aeroelastic Modeling of 3D Wings. Aerospace 2018, 5, 92. [Google Scholar] [CrossRef]
- Cole, J.A.; Maughmer, M.D.; Bramesfeld, G.; Melville, M.; Kinzel, M. Unsteady Lift Prediction with a Higher-Order Potential Flow Method. Aerospace 2020, 7, 60. [Google Scholar] [CrossRef]
- Luckring, J.M.; Rizzi, A. Prediction of concentrated vortex aerodynamics: Current CFD capability survey. Prog. Aerosp. Sci. 2024, 147, 100998. [Google Scholar] [CrossRef]
- Hilger, J.; Ritter, M.R. Nonlinear Aeroelastic Simulations and Stability Analysis of the Pazy Wing Aeroelastic Benchmark. Aerospace 2021, 8, 308. [Google Scholar] [CrossRef]
- Li, X.; Wan, Z.; Wang, X.; Yang, C. Aeroelastic Optimization Design of the Global Stiffness for a Joined Wing Aircraft. Appl. Sci. 2021, 11, 11800. [Google Scholar] [CrossRef]
- Chen, P.C.; Gao, X.W.; Tang, L. Overset Field-Panel Method for Unsteady Transonic Aerodynamic Influence Coefficient Matrix Generation. AIAA J. 2012, 42, 1775–1787. [Google Scholar] [CrossRef]
- Silva, R.G.A.; Mello, O.A.F.; Azevedo, J.L.F.; Chen, P.C.; Liu, D.D. Investigation on Transonic Correction Methods for Unsteady Aerodynamics and Aeroelastic Analyses. J. Aircr. 2012, 45, 1890–1903. [Google Scholar] [CrossRef]
- Friedewald, D.; Thormann, R.; Kaiser, C.; Nitzsche, J. Quasi-steady doublet-lattice correction for aerodynamic gust response prediction in attached and separated transonic flow. CEAS Aeronaut. J. 2018, 9, 53–66. [Google Scholar] [CrossRef]
- Thormann, R.; Dimitrov, D. Correction of aerodynamic influence matrices for transonic flow. CEAS Aeronaut. J. 2014, 5, 435–446. [Google Scholar] [CrossRef]
- Rahmanian, M.; Farsadi, T.; Kurtaran, H. Nonlinear flutter of tapered and skewed cantilevered plates with curvilinear fiber paths. J. Sound. Vib. 2021, 500, 116021. [Google Scholar] [CrossRef]
- Asadi, D.; Farsadi, T.; Kayran, A. Flutter Optimization of a Wing–Engine System with Passive and Active Control Approaches. AIAA J. 2020, 59, 1422–1440. [Google Scholar] [CrossRef]
- Akhavan, H.; Ribeiro, P. Reduced-Order Models for Nonlinear Flutter of Composite Laminates with Curvilinear Fibers. AIAA J. 2019, 57, 3026–3039. [Google Scholar] [CrossRef]
- Kefal, A.; Tessler, A.; Oterkus, E. An enhanced inverse finite element method for displacement and stress monitoring of multilayered composite and sandwich structures. Compos. Struct. 2017, 179, 514–540. [Google Scholar] [CrossRef]
- Najmi, J.; Khan, H.A.; Javaid, S.S.; Hameed, A.; Siddiqui, F. Aeroelastic tailoring for aerospace applications. Heliyon 2024, 10, e24151. [Google Scholar] [CrossRef] [PubMed]
- Fraihat, B.I.; Ajaj, R.M. Aeroelastic tailoring of stiffened cantilever plate using composites and structural layouts: A parametric study. Aeronaut. J. 2024, 128, 2073–2091. [Google Scholar] [CrossRef]
- Leng, J.X.; Wang, Z.G.; Huang, W.; Shen, Y.; An, K. Multidisciplinary Design Optimization Processes for Efficiency Improvement of Aircraft: State-of-the-Art Review. Int. J. Aeronaut. Sp. Sci. 2024. [Google Scholar] [CrossRef]
- Sedelnikov, A.; Kurkin, E.; Quijada-Pioquinto, J.G.; Lukyanov, O.; Nazarov, D.; Chertykovtseva, V.; Kurkina, E.; Hoang, V.H. Algorithm for Propeller Optimization Based on Differential Evolution. Comput. 2024, 12, 52. [Google Scholar] [CrossRef]
- Hosseini, S.; Vaziry-Zanjany, M.A.; Ovesy, H.R. A Framework for Aircraft Conceptual Design and Multidisciplinary Optimization. Aerospace 2024, 11, 273. [Google Scholar] [CrossRef]
- Daoud, M.S.; Shehab, M.; Al-Mimi, H.M.; Abualigah, L.; Zitar, R.A.; Shambour, M.K.Y. Gradient-Based Optimizer (GBO): A Review, Theory, Variants, and Applications. Arch. Comput. Methods Eng. 2023, 30, 2431–2449. [Google Scholar] [CrossRef] [PubMed]
- Ahmadianfar, I.; Bozorg-Haddad, O.; Chu, X. Gradient-based optimizer: A new metaheuristic optimization algorithm. Inf. Sci. 2020, 540, 131–159. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Dahou, A.; Abualigah, L.; Yu, L.; Alshinwan, M.; Khasawneh, A.M.; Lu, S. Advanced metaheuristic optimization techniques in applications of deep neural networks: A review. Neural Comput. Appl. 2021, 33, 14079–14099. [Google Scholar] [CrossRef]
- Gürgen, S.; Kahraman, H.T.; Aras, S.; Altın, İ. A comprehensive performance analysis of meta-heuristic optimization techniques for effective organic rankine cycle design. Appl. Therm. Eng. 2022, 213, 118687. [Google Scholar] [CrossRef]
- Carvalho, J.P.G.; Vargas, D.E.C.; Jacob, B.P.; Lima, B.S.L.P.; Hallak, P.H.; Lemonge, A.C.C. Multi-objective structural optimization for the automatic member grouping of truss structures using evolutionary algorithms. Comput. Struct. 2024, 292, 107230. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Y.; Huang, P.; Peng, H.; Wu, Z. A stable-state multi-objective evolutionary algorithm based on decomposition. Expert. Syst. Appl. 2024, 239, 122452. [Google Scholar] [CrossRef]
- Salgotra, R.; Gandomi, A.H. A novel multi-hybrid differential evolution algorithm for optimization of frame structures. Sci. Rep. 2024, 14, 4877. [Google Scholar] [CrossRef]
- Zapotecas-Martínez, S.; Armas, R.; García-Nájera, A. A multi-objective evolutionary approach for the electric vehicle charging stations problem. Expert. Syst. Appl. 2024, 240, 122514. [Google Scholar] [CrossRef]
- Xu, X.; Xie, C.; Luo, Z.; Zhang, C.; Zhang, T. A multi-objective evolutionary algorithm based on dimension exploration and discrepancy evolution for UAV path planning problem. Inf. Sci. 2024, 657, 119977. [Google Scholar] [CrossRef]
- Bai, Z.; Zhou, H.; Shi, J.; Xing, L.; Wang, J. A hybrid multi-objective evolutionary algorithm with high solving efficiency for UAV defense programming. Swarm Evol. Comput. 2024, 87, 101572. [Google Scholar] [CrossRef]
- Cai, T.; Wang, H. A general convergence analysis method for evolutionary multi-objective optimization algorithm. Inf. Sci. 2024, 663, 120267. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert. Syst. Appl. 2021, 166, 113917. [Google Scholar] [CrossRef]
- Chou, J.S.; Truong, D.N. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl. Math. Comput. 2021, 389, 125535. [Google Scholar] [CrossRef]
- Got, A.; Zouache, D.; Moussaoui, A. MOMRFO: Multi-objective Manta ray foraging optimizer for handling engineering design problems. Knowl.-Based Syst. 2022, 237, 107880. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2022, 192, 84–110. [Google Scholar] [CrossRef]
- Zhong, C.; Li, G.; Meng, Z. Beluga whale optimization: A novel nature-inspired metaheuristic algorithm. Knowl.-Based Syst. 2022, 251, 109215. [Google Scholar] [CrossRef]
- Makhadmeh, S.N.; Al-Betar, M.A.; Doush, I.A.; Awadallah, M.A.; Kassaymeh, S.; Mirjalili, S.; Zitar, R.A. Recent Advances in Grey Wolf Optimizer, its Versions and Applications: Review. IEEE Access 2024, 12, 22991–23028. [Google Scholar] [CrossRef]
- Luiz Junho Pereira, J.; Antônio Oliver, G.; Brendon Francisco, M.; Simões Cunha, S.; Ferreira Gomes, G. Multi-objective lichtenberg algorithm: A hybrid physics-based meta-heuristic for solving engineering problems. Expert. Syst. Appl. 2022, 187, 115939. [Google Scholar] [CrossRef]
- Nematollahi, A.F.; Rahiminejad, A.; Vahidi, B. MOGROM: Multiobjective Golden Ratio Optimization Algorithm. In Multi-Objective Combinatorial Optimization Problems and Solution Methods; Academic Press: Cambridge, MA, USA, 2022; pp. 91–119. [Google Scholar]
- Ghasemi, M.; Golalipour, K.; Zare, M.; Mirjalili, S.; Trojovský, P.; Abualigah, L.; Hemmati, R. Flood algorithm (FLA): An efficient inspired meta-heuristic for engineering optimization. J. Supercomput. 2024, 80, 22913–23017. [Google Scholar] [CrossRef]
- Verij kazemi, M.; Fazeli Veysari, E. A new optimization algorithm inspired by the quest for the evolution of human society: Human felicity algorithm. Expert. Syst. Appl. 2022, 193, 116468. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, K. Multiobjective multifactorial immune algorithm for multiobjective multitask optimization problems. Appl. Soft Comput. 2021, 107, 107399. [Google Scholar] [CrossRef]
- Fomin, F.V.; Fraigniaud, P.; Golovach, P.A. Present-biased optimization. Math. Soc. Sci. 2022, 119, 56–67. [Google Scholar] [CrossRef]
- Oladejo, S.O.; Ekwe, S.O.; Mirjalili, S. The Hiking Optimization Algorithm: A novel human-based metaheuristic approach. Knowl.-Based Syst. 2024, 296, 111880. [Google Scholar] [CrossRef]
- Sowmya, R.; Premkumar, M.; Jangir, P. Newton-Raphson-based optimizer: A new population-based metaheuristic algorithm for continuous optimization problems. Eng. Appl. Artif. Intell. 2024, 128, 107532. [Google Scholar] [CrossRef]
- Stanford, B.; Ifju, P. Multi-Objective Topology Optimization of Wing Skeletons for Aeroelastic Membrane Structures. Int. J. Micro Air Veh. 2009, 1, 51–69. [Google Scholar] [CrossRef]
- Guo, S.; Li, D.; Liu, Y. Multi-objective optimization of a composite wing subject to strength and aeroelastic constraints. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2011, 226, 1095–1106. [Google Scholar] [CrossRef]
- Phiboon, T.; Khankwa, K.; Petcharat, N.; Phoksombat, N.; Kanazaki, M.; Kishi, Y.; Bureerat, S.; Ariyarit, A. Experiment and computation multi-fidelity multi-objective airfoil design optimization of fixed-wing UAV. J. Mech. Sci. Technol. 2021, 35, 4065–4072. [Google Scholar] [CrossRef]
- Wansasueb, K.; Pholdee, N.; Panagant, N.; Bureerat, S. Multiobjective meta-heuristic with iterative parameter distribution estimation for aeroelastic design of an aircraft wing. Eng. Comput. 2022, 38, 695–713. [Google Scholar] [CrossRef]
- Wansasueb, K.; Panagant, N.; Bureerat, S.; Sabangban, N.; Pholdee, N. Comparative study of recent metaheuristics for solving a multiobjective transonic aeroelastic optimization of a composite wing. Acta Mech. 2024, 235, 391–407. [Google Scholar] [CrossRef]
- Rajpal, D.; Mitrotta, F.M.A.; Socci, C.A.; Sodja, J.; Kassapoglou, C.; De Breuker, R. Design and testing of aeroelastically tailored composite wing under fatigue and gust loading including effect of fatigue on aeroelastic performance. Compos. Struct. 2021, 275, 114373. [Google Scholar] [CrossRef]
- Farsadi, T.; Ahmadi, M.; Sahin, M.; Haddad Khodaparast, H.; Kayran, A.; Friswell, M.I. High Aspect Ratio Composite Wings: Geometrically Nonlinear Aeroelasticity, Multi-Disciplinary Design Optimization, Manufacturing, and Experimental Testing. Aerospace 2024, 11, 193. [Google Scholar] [CrossRef]
- Gemma, S.; Mastroddi, F. Genetic and gradient-based algorithms for the multi-objective optimization of aircraft design with aeroelastic constraints. In Proceedings of the International Forum on Aeroelasticity and Structural Dynamics (IFASD 2015), Saint Petersburg, Russia, 28 June–2 July 2015; Central Aerohydrodynamic Institute: Zhukovskiy, Russia, 2017; pp. 692–712. [Google Scholar]
- Caixeta, P.R.; Marques, F.D. Multiobjective optimization of an aircraft wing design with respect to structural and aeroelastic characteristics using neural network metamodel. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 17. [Google Scholar] [CrossRef]
- Elyasi, M.; Roudbari, A.; Hajipourzadeh, P. Multi-objective robust design optimization (MORDO) of an aeroelastic high-aspect-ratio wing. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 560. [Google Scholar] [CrossRef]
- Gasparetto, V.E.L.; Reid, J.; Parsons, W.P.; ElSayed, M.S.A.; Saad, M.; Shieldand, S.; Brown, G.L.; Hilliard, L.M. Multi-Objective Design Optimization of Multiple Tuned Mass Dampers for Attenuation of Dynamic Aeroelastic Response of Aerospace Structures. Aerospace 2023, 10, 235. [Google Scholar] [CrossRef]
- Zappino, E. Multi-Objective Aeroelastic Analysis and Optimization Using Surrogate Models. Ph.D. Thesis, Politecnico di Torino, Turin, Italy, 2023. [Google Scholar]
- Nogueira, F.S.; Pereira, J.L.J.; Simões Cunha, S. Multi-objective sensor placement optimization and damage identification for an aircraft wing using Lichtenberg algorithm. Eng. Comput. 2024, 41, 438–467. [Google Scholar] [CrossRef]
- Colella, M. Integrated Aeroservoelastic Modeling for Preliminary Aircraft Design with Multi-Objective Optimization. Available online: https://iris.uniroma1.it/handle/11573/1711034 (accessed on 25 December 2024).
- Sleesongsom, S.; Bureerat, S. New conceptual design of aeroelastic wing structures by multi-objective optimization. Eng. Optim. 2013, 45, 107–122. [Google Scholar] [CrossRef]
- Ali, N.; Behdinan, K. Optimal Geometrical Design of Aircraft Using Genetic Algorithms. Trans. Can. Soc. Mech. Eng. 2018, 26, 373–388. [Google Scholar] [CrossRef]
- Singh, V.; Sharma, S.K.; Vaibhav, S. Transport Aircraft Conceptual Design Optimization Using Real Coded Genetic Algorithm. Int. J. Aerosp. Eng. 2016, 2016, 2813541. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Ahmadi, M.; Farsadi, T.; Haddad Khodaparast, H. Enhancing gust load alleviation performance in an optimized composite wing using passive wingtip devices: Folding and Twist approaches. Aerosp. Sci. Technol. 2024, 147, 109023. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Shi, L.; Cui, B. Design optimization for the entire aircraft structure of civil aircraft with blended-wing-body layout. Struct. Multidiscip. Optim. 2024, 67, 106. [Google Scholar] [CrossRef]
- Bharti, S.; Frecker, M.; Lesieutre, G. Optimal structural design of a morphing aircraft wing using parallel non-dominated sorting genetic algorithm II (NSGA II). In Proceedings of the Smart Structures and Materials 2006: Modeling, Signal Processing, and Control, San Diego, CA, USA, 26 February–2 March 2006; Volume 6166, pp. 12–23. [Google Scholar] [CrossRef]
- Zandavi, S.M.; Pourtakdoust, S.H. Multidisciplinary design of a guided flying vehicle using simplex nondominated sorting genetic algorithm II. Struct. Multidiscip. Optim. 2018, 57, 705–720. [Google Scholar] [CrossRef]
- Gunpinar, E.; Khan, S. A multi-criteria based selection method using non-dominated sorting for genetic algorithm based design. Optim. Eng. 2020, 21, 1319–1357. [Google Scholar] [CrossRef]
- Shrivastava, S.; Mohite, P.M.; Yadav, T.; Malagaudanavar, A. Multi-objective multi-laminate design and optimization of a Carbon Fibre Composite wing torsion box using evolutionary algorithm. Compos. Struct. 2018, 185, 132–147. [Google Scholar] [CrossRef]
- Ahmadi, M.; Farsadi, T. Multidisciplinary optimization of high aspect ratio composite wings with geometrical nonlinearity and aeroelastic tailoring. Aerosp. Sci. Technol. 2024, 145, 108849. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Z.; Chen, P. Buckling optimization of variable stiffness composite wing boxes with manufacturing defects. Struct. Multidiscip. Optim. 2024, 67, 109. [Google Scholar] [CrossRef]
- Arsenyeva, A.; Duddeck, F.; Thompson, H.M. An iso-contour method for automated fiber placement optimization of composite structures. Compos. Struct. 2024, 327, 117628. [Google Scholar] [CrossRef]
- Jamil, T.; Iqbal, A.; Allauddin, U.; Ahmad, E.; Hashmi, S.A.; Saleem, S.; Ikhlaq, M. Fluid Coupled Structural Analysis and Optimization of Expanded Polystyrene-Fiber-Reinforced Composite Wing of an Unmanned Aerial Vehicle. Mech. Compos. Mater. 2024, 60, 211–226. [Google Scholar] [CrossRef]
- Mitrotta, F.M.A.; Rajpal, D.; Sodja, J.; De Breuker, R. Multi-fidelity design of an aeroelastically tailored composite wing for dynamic wind-tunnel testing. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar] [CrossRef]
- Farsadi, T.; Bozkurt, M.O.; Coker, D.; Kayran, A. Improvement of structural characteristics of composite thin-walled beams using variable stiffness concept via curvilinear fiber placement. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2021, 235, 2017–2032. [Google Scholar] [CrossRef]
- Nikolaos, Z.; Spyridon, K.; Vassilis, P.D.K. Multidisciplinary Aeroelastic Optimization of High Aspect-Ratio Composite Aircraft Wings via Tow-Steering. PREPRINT (Version 1) available at Research Square. 2024. Available online: https://www.researchsquare.com/article/rs-4764693/v1 (accessed on 25 November 2024). [CrossRef]
- Brooks, T.R.; Kenway, G.K.W.; Martins, J.R.R.A. Benchmark aerostructural models for the study of transonic aircraft wings. AIAA J. 2018, 56, 2840–2855. [Google Scholar] [CrossRef]
- DPW6 Geometries|NASA Common Research Model. Available online: https://commonresearchmodel.larc.nasa.gov/geometry/dpw6-geometries/ (accessed on 25 December 2024).
- Computational Results|NASA Common Research Model. Available online: https://commonresearchmodel.larc.nasa.gov/computational-results/ (accessed on 25 December 2024).
- Valencia, E.; Alulema, V.; Hidalgo, V.; Rodriguez, D. A CAD-free methodology for volume and mass properties computation of 3-D lifting surfaces and wing-box structures. Aerosp. Sci. Technol. 2021, 108, 106378. [Google Scholar] [CrossRef]
- Kefal, A.; Oterkus, E.; Tessler, A.; Spangler, J.L. A quadrilateral inverse-shell element with drilling degrees of freedom for shape sensing and structural health monitoring. Eng. Sci. Technol. Int. J. 2016, 19, 1299–1313. [Google Scholar] [CrossRef]
- Nguyen-Van, H.; Mai-Duy, N.; Karunasena, W.; Tran-Cong, T. Buckling and vibration analysis of laminated composite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations. Comput. Struct. 2011, 89, 612–625. [Google Scholar] [CrossRef]
- Figueiras, J.d.A. Ultimate Load Analysis of Anisotropic and Reinforced Concrete Plates and Shells. Ph.D. Thesis, Swansea University, Sketty, UK, 1983. [Google Scholar]
- Rolfes, R.; Rohwer, K. Improved transverse shear stresses in composite finite elements based on first order shear deformation theory. Int. J. Numer. Methods Eng. 1997, 40, 51–60. [Google Scholar] [CrossRef]
- Ünlüsoy, L. Structural Design and Analysis of the Mission Adaptive Wings of an Unmanned Aerial Vehicle. Master’s Thesis, Middle East Technical University, Çankaya, Türkiye, 2010. Available online: https://open.metu.edu.tr/handle/11511/19160 (accessed on 25 December 2024).
- Narayanan, R.M. Microwave Nondestructive Testing of Galvanic Corrosion and Impact Damage in Carbon Fiber Reinforced Polymer Composites. Int. J. Microw. Appl. 2018, 7, 1–15. [Google Scholar] [CrossRef]
- Guerreiro, A.P.; Fonseca, C.M.; Paquete, L. The Hypervolume Indicator: Computational Problems and Algorithms. ACM Comput. Surv. 2021. Epub ahead of print. [Google Scholar] [CrossRef]
- Zitzler, E.; Deb, K.; Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 2000, 8, 173–195. [Google Scholar] [CrossRef] [PubMed]
Material | Property | Value | Unit |
---|---|---|---|
Aluminum | Young’s modulus () | 7.31 × 1010 | Pa. |
Poisson’s ratio () | 0.33 | - | |
Density () | 2780 | kg/m3 | |
Yield stress () | 4.10 × 107 | Pa. | |
Shear modulus () | 2.70 × 1010 | Pa. | |
Carbon fiber | Young’s modulus () | 1.35 × 1011 | Pa. |
Young’s modulus () | 1.00 × 1010 | Pa. | |
Shear modulus () | 5.00 × 109 | Pa. | |
Shear modulus () | 5.00 × 109 | Pa. | |
Shear modulus () | 5.00 × 109 | Pa. | |
Poisson’s ratio () | 0.3 | - | |
Density () | 1600 | kg/m3 | |
Tensile strength () | 1.50 × 109 | Pa. | |
Tensile strength () | 5.00 × 107 | Pa. | |
Tensile shear strength () | 7.00 × 107 | Pa. | |
Compressive strength () | 1.20 × 109 | Pa. | |
Compressive strength () | 2.50 × 108 | Pa. | |
Compressive shear strength () | 7.00 × 107 | Pa. | |
Stress of bonding () | 1.00 × 107 | Pa. |
Algorithm | Parameter Name | Abbreviation | Value |
---|---|---|---|
Multobjective Mayfly Optimization Algorithm (MOMA) | Inertia weight | 0.8 | |
Inertia weight damping ratio | 1 | ||
Personal learning coefficient | 1 | ||
Global learning coefficient | & | 1.5 | |
Distance sight coefficient | 2 | ||
Mutation coefficient | 0.77 | ||
Mutation coefficient damping ratio | 0.99 | ||
Random flight | 0.77 | ||
Random flight damping ratio | 0.99 | ||
Mutation rate | 0.02 | ||
Multiobjective Salp Swarm Algorithm (MSSA) | - | - | - |
Multiobjective Grasshopper Optimization Algorithm (MOGOA) | Exploration and exploitation proportional | [0.00004, 1] | |
Multiobjective Multi-Verse Optimization (MOMVO) | Wormhole existence probability | [0.2, 1] | |
Multiobjective Lichtenberg Algorithm (MOLA) | Reference Lichtenberg point | 0.4 | |
Number of particles | 100,000 | ||
Creation radius | 150 | ||
Stick probability | 1 | ||
Number of grids in each dimension | 30 | ||
Multiobjective Jellyfish Search (MOJS) | Hypercube limitation grid point | 20 | |
Multiobjective Crystal Structure Algorithm (MOCryStAl) | Grid inflation parameter | 0.1 | |
Number of grids per each dimension | 30 | ||
Leader selection pressure parameter | 4 | ||
Extra repository member selection pressure | 2 | ||
Multiobjective Manta Ray Foraging Optimizer (MOMRFO) | Grid inflation parameter | 0.1 | |
Number of grids per each dimension | 30 | ||
Leader selection pressure parameter | 4 | ||
Extra archive member selection pressure | 2 |
Algorithm | MOCryStAl | MOGOA | MOJS | MOLA | MOMA | MOMRFO | MOMVO | MSSA |
---|---|---|---|---|---|---|---|---|
average | 0.42729 | 0.47462 | 0.52441 | 0.43754 | 0.56144 | 0.40638 | 0.65495 | 0.44987 |
standard deviation | 0.06488 | 0.23092 | 0.03094 | 0.06618 | 0.05834 | 0.15415 | 0.07778 | 0.18921 |
maximum | 0.50795 | 0.67949 | 0.56871 | 0.52411 | 0.65702 | 0.52966 | 0.76748 | 0.62961 |
minimum | 0.29419 | 0 | 0.46314 | 0.29234 | 0.470095 | 0 | 0.46145 | 0 |
rank | 7 | 4 | 3 | 6 | 2 | 8 | 1 | 5 |
Optimum Solution Number | No. 1 | No. 2 | No. 3 |
---|---|---|---|
1st objective total mass [kg.] | 32,639.14439 | 44,057.84840 | 69,370.10817 |
2nd objective critical speed [m/s] | 511.90569 | 832.25059 | 876.06638 |
total mass [kg.] | 32,639.14439 | 44,057.84840 | 69,370.10817 |
divergent speed [m/s] | 65,535 | 65,535 | 65,535 |
flutter speed [m/s] | 511.90569 | 832.25059 | 876.06638 |
maximum deflection [m.] | 0.02992 | 0.02639 | 0.01727 |
maximum Von-Misses stress [Pa.] | 200,433,275.012 | 142,468,641.420 | 58,506,362.433 |
maximum Tsai Hill [-] | 0.00084 | 0.00063 | 0.00028 |
lift effectiveness [-] | 1.03190 | 1.02289 | 1.01704 |
minimum buckling factor [-] | 1.15896 | 1.02324 | 1.73896 |
Optimum Solution Number | Solution No. 1 | Solution No. 2 | Solution No. 3 | |
---|---|---|---|---|
1st objective total mass [kg.] | 32,639.14439 | 44,057.84840 | 69,370.10817 | |
2nd objective critical speed [m/s] | 511.9056913 | 832.2505855 | 876.0663793 | |
thickness at root chord | leading spar [mm.] | 8 | 7.5 | 7 |
tailing spar [mm.] | 8.5 | 17 | 29 | |
ribs [mm.] | 1 | 1.5 | 4.5 | |
thickness at tip chord | leading spar [mm.] | 2.3 | 0.7 | 1.4 |
tailing spar [mm.] | 6.6 | 13.6 | 7.6 | |
ribs [mm.] | 1 | 1.4 | 4.3 | |
thickness at upper skin root chord | layer 1, inner layer [mm.] | 1 | 1 | 2 |
layer 2 [mm.] | 9 | 9 | 8 | |
layer 3, middle layer [mm.] | 0.2 | 0.2 | 35 | |
layer 4 [mm.] | 0.4 | 1 | 11 | |
layer 5, outer layer [mm.] | 20 | 11 | 23 | |
thickness at upper skin tip chord | layer 1, inner layer [mm.] | 0.2 | 0.2 | 0.3 |
layer 2 [mm.] | 6.1 | 7.2 | 5.6 | |
layer 3, middle layer [mm.] | 0.1 | 0.1 | 6.4 | |
layer 4 [mm.] | 0.2 | 0.5 | 5.8 | |
layer 5, outer layer [mm.] | 12.8 | 10.1 | 15.4 | |
orientation at upper skin root chord | layer 1, inner layer [mm.] | 100 | 105 | 105 |
layer 2 [mm.] | 135 | 130 | 140 | |
layer 3, middle layer [mm.] | 125 | 155 | 150 | |
layer 4 [mm.] | 165 | 165 | 120 | |
layer 5, outer layer [mm.] | 30 | 45 | 35 | |
orientation at upper skin tip chord | layer 1, inner layer [mm.] | 145 | 145 | 120 |
layer 2 [mm.] | 120 | 130 | 155 | |
layer 3, middle layer [mm.] | 145 | 160 | 165 | |
layer 4 [mm.] | 45 | 35 | 45 | |
layer 5, outer layer [mm.] | 20 | 0 | 0 | |
thickness at lower skin root chord | layer 1, inner layer [mm.] | 0.2 | 1 | 8 |
layer 2 [mm.] | 18 | 30 | 29 | |
layer 3, middle layer [mm.] | 12 | 16 | 16 | |
layer 4 [mm.] | 19 | 31 | 40 | |
layer 5, outer layer [mm.] | 7 | 7 | 12 | |
thickness at lower skin tip chord | layer 1, inner layer [mm.] | 0.2 | 1 | 7.8 |
layer 2 [mm.] | 7.7 | 29.6 | 27.8 | |
layer 3, middle layer [mm.] | 8.7 | 11.4 | 9.1 | |
layer 4 [mm.] | 18.7 | 31 | 40 | |
layer 5, outer layer [mm.] | 2.9 | 4.2 | 5 | |
orientation at lower skin root chord | layer 1, inner layer [mm.] | 130 | 125 | 85 |
layer 2 [mm.] | 115 | 110 | 145 | |
layer 3, middle layer [mm.] | 10 | 15 | 10 | |
layer 4 [mm.] | 150 | 150 | 150 | |
layer 5, outer layer [mm.] | 165 | 160 | 115 | |
orientation at lower skin tip chord | layer 1, inner layer [mm.] | 145 | 145 | 145 |
layer 2 [mm.] | 75 | 50 | 45 | |
layer 3, middle layer [mm.] | 15 | 0 | 0 | |
layer 4 [mm.] | 115 | 115 | 120 | |
layer 5, outer layer [mm.] | 30 | 30 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phuekpan, K.; Khammee, R.; Panagant, N.; Bureerat, S.; Pholdee, N.; Wansasueb, K. A Comparison of Modern Metaheuristics for Multi-Objective Optimization of Transonic Aeroelasticity in a Tow-Steered Composite Wing. Aerospace 2025, 12, 101. https://doi.org/10.3390/aerospace12020101
Phuekpan K, Khammee R, Panagant N, Bureerat S, Pholdee N, Wansasueb K. A Comparison of Modern Metaheuristics for Multi-Objective Optimization of Transonic Aeroelasticity in a Tow-Steered Composite Wing. Aerospace. 2025; 12(2):101. https://doi.org/10.3390/aerospace12020101
Chicago/Turabian StylePhuekpan, Kantinan, Rachata Khammee, Natee Panagant, Sujin Bureerat, Nantiwat Pholdee, and Kittinan Wansasueb. 2025. "A Comparison of Modern Metaheuristics for Multi-Objective Optimization of Transonic Aeroelasticity in a Tow-Steered Composite Wing" Aerospace 12, no. 2: 101. https://doi.org/10.3390/aerospace12020101
APA StylePhuekpan, K., Khammee, R., Panagant, N., Bureerat, S., Pholdee, N., & Wansasueb, K. (2025). A Comparison of Modern Metaheuristics for Multi-Objective Optimization of Transonic Aeroelasticity in a Tow-Steered Composite Wing. Aerospace, 12(2), 101. https://doi.org/10.3390/aerospace12020101