Modelling Airport Pollutants Dispersion at High Resolution †
Abstract
:1. Introduction
- locate airport areas with frequent high pollutants concentration due to local specificities like buildings, fuel tanks, power plants;
- determine the relative contributions to pollutants concentrations: traffic road versus air traffic, APU contribution versus taxiing, etc.;
- study the airport air quality sensitivity to emissions, the volume of which is highly uncertain (particulates from tires and brakes, for example);
- study the air quality improvement with new or conceptual technologies, new or future procedures (e.g., electric taxiing, sustainable fuels);
- study the effect of particular meteorological conditions (e.g., atmospheric inversion or unstable cases with heat convection) on local pollution episodes.
2. Models Description
2.1. Air Traffic System Model: IESTA
2.2. The Meteorological Model: Meso-NH
3. Models Set-Up
3.1. Building the Emissions Database
3.2. Initialisation and Land Surface Data
4. Results
4.1. Dynamic Situation
4.2. NOx Dispersion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Arunachalam, S.; Wang, B.; Davis, N.; Baek, B.H.; Levy, J.I. Effect of chemistry-transport model scale and resolution on population exposure to PM2.5 from aircraft emissions during landing and takeoff. Atmos. Environ. 2011, 45, 3294–3300. [Google Scholar] [CrossRef]
- Rissman, J.; Arunachalam, S.; Woody, M.; West, J.J.; BenDor, T.; Binkowski, F. A plume-in-grid approach to characterize air quality impacts of aircraft emissions at the Hartsfield Jackson Atlanta International Airport. Atmos. Chem. Phys. 2013, 13, 9285–9302. [Google Scholar] [CrossRef]
- Hirtl, M.; Baumann-Stanzer, K. Evaluation of two dispersion models (ADMS-Roads and LASAT) applied to street canyons in Stockholm, London and Berlin. Atmos. Environ. 2007, 41, 5959–5971. [Google Scholar] [CrossRef]
- Carruthers, D.; Holroyd, R.; Hunt, J.; Weng, W.; Robins, A.; Apsley, D.; Thompson, D.; Smith, F. UK-ADMS: A new approach to modelling dispersion in the earth’s atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn. 1994, 52, 139–153. [Google Scholar] [CrossRef]
- Peace, H.; Maughan, J.; Owen, B.; Raper, D. Identifying the contribution of different airport related sources to local urban air quality. Environ. Model. Softw. 2006, 21, 532–538. [Google Scholar] [CrossRef]
- Farias, F.; ApSimon, H. Relative contributions from traffic and aircraft NOx emissions to exposure in West London. Environ. Model. Softw. 2006, 21, 477–485. [Google Scholar] [CrossRef]
- Holmes, N.; Morawska, L. A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmos. Environ. 2006, 40, 5902–5928. [Google Scholar] [CrossRef] [Green Version]
- Demael, E.; Carissimo, B. Comparative Evaluation of an Eulerian CFD and Gaussian Plume Models Based on Prairie Grass Dispersion Experiment. J. Appl. Meteorol. Climatol. 2008, 47, 888–900. [Google Scholar] [CrossRef]
- Riddle, A.; Carruthers, D.; Sharpe, A.; McHugh, C.; Stocker, J. Comparisons between FLUENT and ADMS for atmospheric dispersion modelling. Atmos. Environ. 2004, 38, 1029–1038. [Google Scholar] [CrossRef]
- Aubry, S.; Chaboud, T.; Dupeyrat, M.; Élie, A.; Huynh, N.; Lefebvre, T.; Rivière, T. Evaluating the local environmental impact of air traffic with IESTA: Outputs and validation walkthrough. In Proceedings of the 27th Congress of the International Council of the Aeronautical Sciences, Nice, France, 19–24 September 2010. [Google Scholar]
- Sarrat, C.; Aubry, S.; Chaboud, T. Modeling air trafic impact on local air quality with IESTA and ADMS-AIRPORT: Validation using field measurements on a regional airport. In Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences, Brisbane, Australia, 23–28 September 2012. [Google Scholar]
- Schaefer, M.; Bartosch, S. Overview on Fuel Flow Correlation Methods for the Calculation of NOx, CO and HC Emissions and Their Implementation Into Aircraft Performance Software; Technical Report IB-325-11-13; DLR: Cologne, Germany, 2013. [Google Scholar]
- International Civil Aviation Organization (ICAO). Airport Air Quality Manual. Available online: http://www.icao.int/environmental-protection/Pages/environment-publications.aspx (accessed on 11 April 2017).
- Swedish Defence Research Agency (FOI). FOI’s Confidential database for Turboprop Engine Emissions. Available online: https://www.foi.se/en/our-knowledge/aeronautics-and-air-combat-simulation/fois-confidential-database-for-turboprop-engine-emissions.htm (accessed on 11 April 2017).
- Tulet, P.; Crassier, V.; Solmon, F.; Guedalia, D.; Rosset, R. Description of the Mesoscale Nonhydrostatic Chemistry model and application to a transboundary pollution episode between northern France and southern England. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Sarrat, C.; Lemonsu, A.; Masson, V.; Guedalia, D. Impact of Urban Heat Island on Regional Atmospheric Pollution. Atmos. Environ. 2006, 40, 1743–1758. [Google Scholar] [CrossRef]
- Sarrat, C.; Noilhan, J.; Dolman, A.; Gerbig, C.; Ahmadov, R.; Tolk, L.; Meesters, A.; Hutjes, R.; Maat, H.T.; Pèrez-Landa, G.; et al. Atmospheric CO2 modeling at the regional scale: An intercomparison of 5 meso-scale atmospheric models. Biogeosciences 2007, 4, 1115–1126. [Google Scholar] [CrossRef]
- Lac, C.; Donnelly, R.P.; Masson, V.; Pal, S.; Riette, S.; Donier, S.; Queguiner, S.; Tanguy, G.; Ammoura, L.; Xueref-Remy, I. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project. Atmos. Chem. Phys. 2013, 13, 4941–4961. [Google Scholar] [CrossRef]
- Berger, A.; Barbet, C.; Leriche, M.; Deguillaume, L.; Mari, C.; Chaumerliac, N.; Bègue, N.; Tulet, P.; Gazen, D.; Escobar, J. Evaluation of Meso-NH and WRF/CHEM simulated gas and aerosol chemistry over Europe based on hourly observations. Atmos. Res. 2016, 176–177, 43–63. [Google Scholar] [CrossRef] [Green Version]
- Lafore, J.; Stein, J.; Bougeault, P.; Ducrocq, V.; Duron, J.; Fischer, C.; Héreil, P.; Mascart, P.; Masson, V.; Pinty, J.P.; et al. The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations. Ann. Geophys. 1998, 16, 90–109. [Google Scholar] [CrossRef]
- Cuxart, J.; Bougeault, P.; Redelsperger, J.L. A turbulence scheme allowing for mesoscale and large-eddy simulations. Q. J. R. Meteorol. Soc. 2000, 126, 1–30. [Google Scholar] [CrossRef]
- Masson, V.; Le Moigne, P.; Martin, E.; Faroux, S.; Alias, A.; Alkama, R.; Belamari, S.; Barbu, A.; Boone, A.; Bouyssel, F.; et al. The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci. Model Dev. 2013, 6, 929–960. [Google Scholar] [CrossRef] [Green Version]
- Noilhan, J.; Planton, S. A simple parametrization of land surface processes for meteorological models. Mon. Weather Rev. 1989, 117, 536–549. [Google Scholar] [CrossRef]
- Masson, V. A physically based scheme for the urban energy budget in atmospheric models. Bound. Layer Meteorol. 2000, 94, 357–397. [Google Scholar] [CrossRef]
- Aumond, P.; Masson, V.; Lac, C.; Gauvreau, B.; Dupont, S.; Bérengier, M. Including the drag effects of canopies: Real case large-eddy simulation studies. Bound. Layer Meteorol. 2013, 146, 65–80. [Google Scholar] [CrossRef]
- Seity, Y.; Brousseau, P.; Malardel, S.; Hello, G.; Bénard, P.; Bouttier, F.; Lac, C.; Masson, V. The AROME-France Convective-Scale Operational Model. Mon. Weather Rev. 2010, 139, 976–991. [Google Scholar] [CrossRef]
- Ricard, D.; Lac, C.; Riette, S.; Legrand, R.; Mary, A. Kinetic energy spectra characteristics of two convection-permitting limited-area models AROME and Meso-NH. Q. J. R. Meteorol. Soc. 2013, 139, 1327–1341. [Google Scholar] [CrossRef]
- Faroux, S.; Kaptué Tchuenté, A.T.; Roujean, J.L.; Masson, V.; Martin, E.; Le Moigne, P. ECOCLIMAP-II/Europe: A twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models. Geosci. Model Dev. 2013, 6, 563–582. [Google Scholar] [CrossRef]
- Bergot, T.; Escobar, J.; Masson, V. Effect of small scale surface heterogeneities and buildings on radiation fog: Large-Eddy Simulation study at Paris-Charles de Gaulle airport. Q. J. R. Meteorol. Soc. 2016, 142, 1029–1040. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarrat, C.; Aubry, S.; Chaboud, T.; Lac, C. Modelling Airport Pollutants Dispersion at High Resolution. Aerospace 2017, 4, 46. https://doi.org/10.3390/aerospace4030046
Sarrat C, Aubry S, Chaboud T, Lac C. Modelling Airport Pollutants Dispersion at High Resolution. Aerospace. 2017; 4(3):46. https://doi.org/10.3390/aerospace4030046
Chicago/Turabian StyleSarrat, Claire, Sébastien Aubry, Thomas Chaboud, and Christine Lac. 2017. "Modelling Airport Pollutants Dispersion at High Resolution" Aerospace 4, no. 3: 46. https://doi.org/10.3390/aerospace4030046
APA StyleSarrat, C., Aubry, S., Chaboud, T., & Lac, C. (2017). Modelling Airport Pollutants Dispersion at High Resolution. Aerospace, 4(3), 46. https://doi.org/10.3390/aerospace4030046