The Effect of Post-Processing on the Mechanical Behavior of Ti6Al4V Manufactured by Electron Beam Powder Bed Fusion for General Aviation Primary Structural Applications
Abstract
:1. Introduction
2. Major Issues of EBM Use for Aircraft Application
3. Materials
4. Methods
- -
- “As built” directly EBM manufactured in the dog-bone shape suitable to be tested
- -
- “Machined” obtained by machining cylindrical bars produced by EBM
4.1. Tensile Tests
- -
- n.3 tensile samples with 0° build orientation with respect to the start plate (x-y plane);
- -
- n.3 tensile samples with 45° build orientation with respect to the start plate (x-y plane);
- -
- n.3 tensile samples with 90° build orientation with respect to the start plate (x-y plane).
4.2. Fatigue Tests
- -
- N. 25 machined specimens, i.e., produced by machining cylindrical bars manufactured by EBM process;
- -
- N. 25 specimens as built, i.e., produced by EBM in the dog-bone shape suitable to be tested.
4.3. Linear-Elastic Plane-Strain Fracture Toughness KIC Tests
5. Results
5.1. Tensile Tests
5.2. Fatigue Tests
5.3. Linear-Elastic Plane-Strain Fracture Toughness KIC Tests
6. Discussion
- -
- Tensile properties revealed that the specimens tested from the 90° built samples have marginally higher strength values if compared to the specimens built in the 0° and 45° orientation. Nevertheless, the differences fall within the normal statistical dispersion of the data so that the tests do not show a significant anisotropy of the material as even shown by the plots represented in Figure 9;
- -
- Ultimate strength, yield strength, and Young modulus of Ti6Al4V specimens obtained by machining bar produced by EBM show slight better performance than standard Ti6A4V (annealed condition);
- -
- Ultimate strength, yield strength, and Young modulus of Ti6Al4V specimens in “as built conditions” show a slight worse performance than standard Ti6A4V (annealed condition);
- -
- Machined specimens show a high Young modulus homogeneity among build orientations and significant higher tensile performances values if compared with as built specimens.
7. Conclusions
- -
- The tensile tests have shown high mechanical performance of Ti6Al4V EBM-processed, particularly the specimens obtained by machining bars produced by EBM have shown tensile results slightly better than standard Ti6Al4V in annealed condition [45];
- -
- The fatigue performance of Ti6Al4V processed by EBM are generally lower than Ti6Al4V standard (in annealed condition) [45], highlighting, on the other side, that Ti6Al4V produced by EBM in as built condition shows the worst fatigue behavior;
- -
- The stress-cycles curve of Ti6Al4V obtained by machining cylindrical bars produced by EBM shows a comparable, even if slightly lower, behavior if compared with Ti6Al4V standard (in annealed condition) [45];
- -
- The KIC value of Ti6Al4V produced by EBM is considerably worse than Ti6Al4V standard (in annealed condition) [45].
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eyers, D.; Potter, A. Industrial Additive Manufacturing: A manufacturing systems perspective. Comput. Ind. 2017, 92, 208–218. [Google Scholar] [CrossRef]
- Singamneni, S.; Lv, Y.; Hewitt, A.; Chalk, R.; Thomas, W.; Jordison, D. Additive Manufacturing for the Aircraft Industry: A Review. J. Aeronaut. Aerosp. Eng. 2019, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ceruti, A.; Marzocca, P.; Liverani, A.; Bil, C. Maintenance in aeronautics in an Industry 4.0 context: The role of Augmented Reality and Additive Manufacturing. J. Comput. Des. Eng. 2019, 6, 516–526. [Google Scholar] [CrossRef]
- ASTM. Standard Terminology for Additive Manufacturing Technologies, F2797-12; ASTM: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Gibson, I.; Rosen, D.W.; Stucker, B. Additive Manufacturing Technologies—Rapid Prototyping to Direct Digital Manufacturing, 3rd ed.; Springer: New York, NY, USA, 2015; pp. 105–119. [Google Scholar]
- Choi, D.-S.; Lee, S.; Jeong, S.; Whang, K.; Song, Y.; Park, S.; Jee, H. Development of a direct metal freeform fabrication technique using CO2 laser welding and milling technology. J. Mater. Process. Technol. 2001, 113, 273–279. [Google Scholar] [CrossRef]
- Yilmaz, O.; Ugla, A. Shaped metal deposition technique in additive manufacturing: A review. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 2016, 230, 1781–1798. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Sames, W.; List, F.A.; Pannala, S.; Dehoff, R.R.; Babu, S.S. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 2016, 61, 315–360. [Google Scholar] [CrossRef]
- Van Grunsven, W.; Hernández-Nava, E.; Reilly, G.C.; Goodall, R. Fabrication and Mechanical Characterisation of Titanium Lattices with Graded Porosity. Metal 2014, 4, 401–409. [Google Scholar] [CrossRef]
- Gong, X.; Anderson, T.; Chou, K. Review on powder-based electron beam additive manufacturing technology. Manuf. Rev. 2014, 1, 2. [Google Scholar] [CrossRef]
- Koerner, C. Additive manufacturing of metallic components by selective electron beam melting—A review. Int. Mater. Rev. 2016, 61, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Koike, M.; Greer, P.; Owen, K.; Lilly, G.; Murr, L.; Gaytan, S.M.; Martinez, E.; Okabe, T. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies—Electron Beam Melting and Laser Beam Melting. Materials 2011, 4, 1776–1792. [Google Scholar] [CrossRef] [PubMed]
- Franchitti, S.; Borrelli, R.; Pirozzi, C.; Carrino, L.; Polini, W.; Sorrentino, L.; Gazzerro, A. Investigation on Electron Beam Melting: Dimensional accuracy and process repeatability. Vacuum 2018, 157, 340–348. [Google Scholar] [CrossRef]
- Li, M.X.; Qu, W.Q. Electron Beam Additive Manufacturing and its Applications in Aerospace Field. Mater. Sci. Forum 2014, 789, 377–383. [Google Scholar] [CrossRef]
- Gong, X.; Anderson, T.; Chou, K. Review on Powder-Based Electron Beam Additive Manufacturing Technology. In Proceedings of the ASME/ISCIE 2012 International Symposium on Flexible Automation, Saint Louis, MO, USA, 18–20 June 2012. [Google Scholar] [CrossRef] [Green Version]
- Murr, L.; Esquivel, E.; Quinones, S.; Gaytan, S.; López, M.; Martinez, E.; Medina, F.; Hernandez, D.; Martinez, E.; Martinez, J.; et al. Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V. Mater. Charact. 2009, 60, 96–105. [Google Scholar] [CrossRef]
- Koike, M.; Martinez, K.; Guo, L.; Chahine, G.; Kovacevic, R.; Okabe, T. Evaluation of titanium alloy fabricated using electron beam melting system for dental applications. J. Mater. Process. Technol. 2011, 211, 1400–1408. [Google Scholar] [CrossRef]
- Svensson, M.; Ackelid, U. Titanium alloys manufactured with electron beam melting mechanical and chemical properties, Medical Device Materials. In Proceedings of the V-Proceedings of the Materials and Processes for Medical Devices Conference 2009, Minneapoli, MN, USA, 10–12 August 2009; pp. 189–194. [Google Scholar]
- Gaytan, S.M.; Murr, L.E.; Hernandez, D.H.; Martinez, E.; Quinones, S.A.; Medina, F.; Wicker, R.B. Structure-property-process optimization in the rapid-layer manufacturing of Ti-6A1-4V components by electron beam melting. In Proceedings of the TMS 2009-138th Annual Meeting and Exhibition 2009, San Francisco, CA, USA, 15–19 February 2009; pp. 363–369. [Google Scholar]
- Bhavar, V.; Kattire, P.; Patil, V.; Khot, S.; Gujar, K.; Singh, R. A review on powder bed fusion technology of metal additive manufacturing. In Proceedings of the 4th International Conference and Exhibition on Additive Manufacturing Technologies-AM-2014, Bangalore, India, 1–2 September 2014. [Google Scholar]
- Rafi, H.K.; Karthik, N.V.; Gong, H.; Starr, T.L.; Stucker, B. Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting. J. Mater. Eng. Perform. 2013, 22, 3872–3883. [Google Scholar] [CrossRef]
- Zhao, X.; Li, S.; Zhang, M.; Liu, Y.; Sercombe, T.B.; Wang, S.; Hao, Y.; Yang, R.; Murr, L. Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting. Mater. Des. 2016, 95, 21–31. [Google Scholar] [CrossRef]
- Murr, L.; Martinez, E.; Amato, K.N.; Gaytan, S.M.; Hernandez, J.; Ramirez, D.A.; Shindo, P.W.; Medina, F.; Wicker, R.B. Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science. J. Mater. Res. Technol. 2012, 1, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Hrabe, N.W.; Quinn, T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), Part 2: Energy input, orientation, and location. Mater. Sci. Eng. A 2013, 573, 271–277. [Google Scholar] [CrossRef]
- Wang, X.; Chou, K. EBSD study of beam speed effects on Ti-6Al-4V alloy by powder bed electron beam additive manufacturing. J. Alloys Compd. 2018, 748, 236–244. [Google Scholar] [CrossRef]
- Battelle Memorial Institute. Metallic Materials Properties Development and Standardization Handbook; Battelle Memorial Institute: Columbus, OH, USA, 2010. [Google Scholar]
- Rafi, K.; Starr, T.L.; Stucker, B.E. Mechanical property evaluation of Ti-6Al-4V parts made using Electron Beam Melting. In Proceedings of the Solid Freeform Fabrication Symposium Proceedings, Austin, TX, USA, 6–8 August 2012. [Google Scholar]
- Borrelli, R.; Franchitti, S.; Pirozzi, C.; Carrino, L.; Nele, L.; Polini, W.; Sorrentino, L.; Corrado, A. Ti6Al4V Parts Produced by Electron Beam Melting: Analysis of Dimensional Accuracy and Surface Roughness. J. Adv. Manuf. Syst. 2020, 19, 107–130. [Google Scholar] [CrossRef]
- Kok, Y.; Tan, X.; Wang, P.; Nai, M.; Loh, N.; Liu, E.; Tor, S. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586. [Google Scholar] [CrossRef]
- Seifi, M.; Dahar, M.; Aman, R.; Harrysson, O.; Beuth, J.; Lewandowski, J.J. A critical review Evaluation of Orientation Dependence of Fracture Toughness and Fatigue Crack Propagation Behavior of As-Deposited ARCAM EBM Ti-6Al-4V. JOM 2015, 67, 597–607. [Google Scholar] [CrossRef]
- Seifi, M.; Salem, A.; Satko, D.; Shaffer, J.; Lewandowski, J. Defect distribution and microstructure heterogeneity effects on fracture resistance and fatigue behavior of EBM Ti–6Al–4V. Int. J. Fatigue 2017, 94, 263–287. [Google Scholar] [CrossRef]
- Quénard, O.; Dorival, O.; Guy, P.; Votié, A.; Brethome, K. Measurement of fracture toughness of metallic materials produced by additive manufacturing. CEAS Space J. 2018, 10, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Schiller, G.J. Additive manufacturing for Aerospace. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015; pp. 1–8. [Google Scholar]
- Uriondo, A.; Esperon-Miguez, M.; Perinpanayagam, S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2015, 229, 2132–2147. [Google Scholar] [CrossRef]
- EASA. Certification Memorandum Additive Manufacturing; EASA CM No.: CM–S-008 Issue 01 Issued 04 April 2017; EASA: Koln, Germany, 2017. [Google Scholar]
- Neira-Arce, A. Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti-6Al-4V Alloys. Ph.D. Dissertation, North Carolina State University, Raleigh, NC, USA, 22 June 2012. [Google Scholar]
- Dawes, J.; Bowerman, R.; Trepleton, R. Introduction to the Additive Manufacturing Powder Metallurgy Supply Chain. Johns. Matthey Technol. Rev. 2015, 59, 243–256. [Google Scholar] [CrossRef]
- ASTM. Standard Test Methods for Flow Rate of Metal Powders Using the Hall Flowmeter Funnel, B213; ASTM: West Conshohocken, PA, USA, 2013. [Google Scholar]
- ASTM. Standard Test Method for Apparent Density of Free-Flowing Metal Powders Using the Hall Flowmeter Funnel, B212; ASTM: West Conshohocken, PA, USA, 2013. [Google Scholar]
- ASTM. Standard Test Method for Sieve Analysis of Metal Powders, B214; ASTM: West Conshohocken, PA, USA, 2007. [Google Scholar]
- ASTM. Standard Test Methods for Tension Testing of Metallic Materials, E08/08M; ASTM: West Conshohocken, PA, USA, 2016. [Google Scholar]
- ASTM. Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, E466; ASTM: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM. Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials, E399; ASTM: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Matweb URL. Available online: http://www.matweb.com (accessed on 11 December 2019).
- Pirozzi, C.; Franchitti, S.; Borrelli, R.; Caiazzo, F.; Alfieri, V.; Argenio, P. Study on the Factors Affecting the Mechanical Behavior of Electron Beam Melted Ti6Al4V. J. Mater. Eng. Perform. 2017, 26, 4491–4499. [Google Scholar] [CrossRef]
- Sepe, R.; Franchitti, S.; Borrelli, R.; Di Caprio, F.; Armentani, E.; Caputo, F. Correlation between real geometry and tensile mechanical behaviour for Ti6Al4V electron beam melted thin specimens. Theor. Appl. Fract. Mech. 2020, 107, 102519. [Google Scholar] [CrossRef]
- Nicoletto, G.; Konečná, R.; Frkáň, M.; Riva, E. Surface roughness and directional fatigue behavior of as-built EBM and DMLS Ti6Al4V. Int. J. Fatigue 2018, 116, 140–148. [Google Scholar] [CrossRef]
- Moussaoui, K.; Michel, M.; Senatore, J.; Chieragatti, R.; Lamesle, P. Influence of Milling on the Fatigue Lifetime of a Ti6Al4V Titanium Alloy. Metal 2015, 5, 1148–1162. [Google Scholar] [CrossRef]
- Facchini, L.; Magalini, E.; Robotti, P.; Molinari, A. Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyp. J. 2009, 15, 171–178. [Google Scholar] [CrossRef]
- Popov, V.; Katz-Demyanetz, A.; Garkun, A.; Muller-Kamskii, G.; Strokin, E.; Rosenson, H. Effect of Hot Isostatic Pressure treatment on the Electron-Beam Melted Ti-6Al-4V specimens. Procedia Manuf. 2018, 21, 125–132. [Google Scholar] [CrossRef]
- Paletta, N.; Belardo, M.; Di Palma, L. An Automatic Procedure for the Landing Gear Conceptual Design of a Light Unmanned Aircraft; SAE Technical Paper Series; SAE: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- Paletta, N.; Belardo, M.; Di Palma, L. Non-Linear Dynamic Loads Due to the Landing Impact of a Joined-Wing UAV; SAE Technical Paper; EID: 2-s2.0-84877522294; SAE: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Belardo, M.; Paletta, N.; Di Palma, L.; Pecora, M. Structural and Aeroelastic Design of a Joined-Wing UAV. J. Aerosp. Eng. 2014, 27, 93–111. [Google Scholar] [CrossRef]
- Guła, P.; Ulma, D.; Żurek, K.; Żurawski, R. Challenges of turboprop engine installation on small aircraft. Aircr. Eng. Aerosp. Technol. 2019, 91, 938–948. [Google Scholar] [CrossRef]
Chemical Element | % | Required % ASTM F2924 |
---|---|---|
Al | 6.40 | 5.50–6.75 |
V | 4.12 | 3.50–4.50 |
Fe | 0.18 | <0.30 |
O | 0.14 | <0.20 |
N | 0.01 | <0.05 |
H | 0.003 | <0.015 |
C | 0.01 | <0.08 |
Ti | Balance | Balance |
Type of Test | Sample Type | Standard | Manufacturing Condition | Build Orientation | N. of Sample | Remark |
---|---|---|---|---|---|---|
Tensile Test | Cylindrical Standard dimensions | ASTM E08 | As built | 0°; 45°; 90° | 9 | n. 3 sample for each build orientation |
Tensile Test | Cylindrical Standard dimensions | ASTM E08 | Machined | 0°; 45°; 90° | 9 | n. 3 sample for each build orientation |
Fatigue Test | Cylindrical Standard dimensions | ASTM E466 | As built | 90° | 30 | n. 5 sample for n. 6 point of the Wohler curve |
Fatigue Test | Cylindrical Standard dimensions | ASTM E466 | Machined | 90° | 30 | n. 5 sample for n. 6 point of the Wohler curve |
Fracture Toughness | Compact Tension | ASTM E399 | Machined | 90° and horizontal notch | 6 | n. 6 compact CT samples for 90° build orientation only |
ID of the Specimen | Build Direction | E [GPa] | σ02 [MPa] | Σmax [MPa] |
---|---|---|---|---|
spec 1 as built | 0° | 101.4 | 864.2 | 925.7 |
spec 2 as built | 97.5 | 845.7 | 910.5 | |
spec 3 as built | 97.4 | 848.0 | 908.8 | |
Average | 98.8 | 852.6 | 915.0 | |
ST.DEV | 2.3 | 10.0 | 9.3 | |
RELATIVE ST.DEV | 2.3% | 1.2% | 1.0% | |
spec 4 as built | 45° | 108.0 | 872.8 | 932.5 |
spec 5 as built | 107.5 | 864.6 | 921.5 | |
spec 6 as built | 108.2 | 840. 0 | 900.0 | |
Average | 107.9 | 859.1 | 918.0 | |
ST.DEV | 0.4 | 17.1 | 16.5 | |
RELATIVE ST.DEV | 0.3% | 2.0% | 1.8% | |
spec 7 as built | 90° | 106.0 | 865.7 | 927.8 |
spec 8 as built | 105.4 | 857.6 | 918.7 | |
spec 9 as built | 103.1 | 848.6 | 910.8 | |
Average | 104.8 | 857.3 | 919.1 | |
ST.DEV | 1.5 | 8.6 | 8.5 | |
RELATIVE ST.DEV | 1.5% | 1.0% | 0.9% |
ID of the Specimen | Build Direction | E [GPa] | σ02 [MPa] | Σmax [MPa] |
---|---|---|---|---|
spec 1 machined | 0° | 122.3 | 935.4 | 981.9 |
spec 2 machined | 110.7 | 944.7 | 990.3 | |
spec 3 machined | 109.4 | 911.3 | 1008.0 | |
Average | 114.1 | 930.5 | 993.4 | |
ST.DEV | 7.1 | 17.2 | 13.3 | |
RELATIVE ST.DEV | 6.2% | 1.9% | 1.3% | |
spec 4 machined | 45° | 113.2 | 897.3 | 955.3 |
spec 5 machined | 117.3 | 927.2 | 986.7 | |
spec 6 machined | 116.9 | 905.3 | 988.3 | |
Average | 115.8 | 909.9 | 976.8 | |
ST.DEV | 2.3 | 15.5 | 18.6 | |
RELATIVE ST.DEV | 2.0% | 1.7% | 1.9% | |
spec 7 machined | 90° | 120.0 | 978.1 | 1041.6 |
spec 8 machined | 110.6 | 938.0 | 997.6 | |
spec 9 machined | 117.0 | 949.0 | 1021.0 | |
Average | 115.9 | 955.0 | 1020.1 | |
ST.DEV | 4.8 | 20.7 | 22.0 | |
RELATIVE ST.DEV | 4.1% | 2.2% | 2.2% |
CT1 | CT2 | CT3 | CT4 | CT5 | CT6 | MEAN | St. Dev. | |
---|---|---|---|---|---|---|---|---|
KIC [MPa] | 29.6 | 33.4 | 31.2 | 30.2 | 32.6 | 30.5 | 31.25 | 1.47 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirozzi, C.; Franchitti, S.; Borrelli, R.; Chiariello, A.; Di Palma, L. The Effect of Post-Processing on the Mechanical Behavior of Ti6Al4V Manufactured by Electron Beam Powder Bed Fusion for General Aviation Primary Structural Applications. Aerospace 2020, 7, 75. https://doi.org/10.3390/aerospace7060075
Pirozzi C, Franchitti S, Borrelli R, Chiariello A, Di Palma L. The Effect of Post-Processing on the Mechanical Behavior of Ti6Al4V Manufactured by Electron Beam Powder Bed Fusion for General Aviation Primary Structural Applications. Aerospace. 2020; 7(6):75. https://doi.org/10.3390/aerospace7060075
Chicago/Turabian StylePirozzi, Carmine, Stefania Franchitti, Rosario Borrelli, Antonio Chiariello, and Luigi Di Palma. 2020. "The Effect of Post-Processing on the Mechanical Behavior of Ti6Al4V Manufactured by Electron Beam Powder Bed Fusion for General Aviation Primary Structural Applications" Aerospace 7, no. 6: 75. https://doi.org/10.3390/aerospace7060075
APA StylePirozzi, C., Franchitti, S., Borrelli, R., Chiariello, A., & Di Palma, L. (2020). The Effect of Post-Processing on the Mechanical Behavior of Ti6Al4V Manufactured by Electron Beam Powder Bed Fusion for General Aviation Primary Structural Applications. Aerospace, 7(6), 75. https://doi.org/10.3390/aerospace7060075