Plant Model-Based Fault Detection during Aircraft Takeoff Using Non-Deterministic Finite-State Automata
Abstract
:1. Introduction
2. Modification of Common Methodology
2.1. Systems and Faults
2.2. Fault Detection Method
2.3. Computing Discrete Approximations
2.3.1. Computational Method
2.3.2. Implementation
2.4. Theory Versus Reality
3. Application: Takeoff Monitoring
3.1. Regular Relations during Takeoff
3.2. Fault Modelling
3.3. Implementation of the Takeoff Monitoring
3.3.1. Computing the Discrete Approximation
3.3.2. Simulation of the Takeoff Run
3.3.3. Implementation of the Fault Detection Algorithm
3.4. Experimental Evaluation
4. Discussion and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Frank, P.M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results. Automatica 1990, 26, 459–474. [Google Scholar] [CrossRef]
- Hwang, I.; Kim, S.; Kim, Y.; Seah, C.E. A survey of fault detection, isolation, and reconfiguration methods. IEEE Trans. Control Syst. Technol. 2010, 18, 636–653. [Google Scholar] [CrossRef]
- Isermann, R. Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- De Persis, C.; Isidori, A. A geometric approach to nonlinear fault detection and isolation. IEEE Trans. Autom. Control 2001, 46, 853–865. [Google Scholar] [CrossRef] [Green Version]
- Venkatasubramanian, V.; Chan, K. A neural network methodology for process fault diagnosis. AIChE J. 1989, 35, 1993–2002. [Google Scholar] [CrossRef]
- Chand, S. Discrete-Event Based Monitoring and Diagnosis of Manufacturing Processes. In Proceedings of the American Control Conference, San Francisco, CA, USA, 2–4 June 1993; pp. 1508–1512. [Google Scholar] [CrossRef]
- Bavishi, S.; Chong, E.K.P. Automated fault diagnosis using a discrete event systems framework. In Proceedings of the 9th IEEE International Symposium on Intelligent Control, Columbus, OH, USA, 16–18 August 1994; pp. 213–218. [Google Scholar] [CrossRef]
- Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.; Teneketzis, D. Failure diagnosis using discrete event models. In Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL, USA, 14–16 December 1994; Volume 3, pp. 3110–3116. [Google Scholar] [CrossRef] [Green Version]
- Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.; Teneketzis, D.C. Failure diagnosis using discrete-event models. IEEE Trans. Control Syst. Technol. 1996, 4, 105–124. [Google Scholar] [CrossRef] [Green Version]
- Ramkumar, K.; Philips, P.; Presig, H.A.; Ho, W.; Lim, K. Structured fault-detection and diagnosis using finite-state automaton. In Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, Aachen, Germany, 31 August–4 September 1998; Volume 3, pp. 1667–1672. [Google Scholar]
- Ramkumar, K.; Druckenmuller, M.; Xi, Y.; Philips, P.; Presig, H.; Ho, W.; Lim, K. A fault-detection and diagnosis scheme by dynamic computation of finite-state automaton tables. In Proceedings of the 25th Annual Conference of the IEEE Industrial Electronics Society, San Jose, CA, USA, 29 November–3 December 1999; Volume 2, pp. 698–703. [Google Scholar]
- Xi, Y.X.; Lim, K.W.; Ho, W.K.; Preisig, H.A. Fault diagnosis using dynamic finite-state automaton models. In Proceedings of the 27th Annual Conference of the IEEE Industrial Electronics Society, Denver, CO, USA, 29 November–2 December 2001; Volume 1, pp. 484–489. [Google Scholar]
- Lunze, J.; Schröder, J. State Observation and Diagnosis of Discrete-Event Systems Described by Stochastic Automata. Discret. Event Dyn. Syst. 2001, 11, 319–369. [Google Scholar] [CrossRef]
- Lunze, J.; Schröder, J. Sensor and actuator fault diagnosis of systems with discrete inputs and outputs. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2004, 34, 1096–1107. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K. Abstraction-based failure diagnosis for discrete event systems. Syst. Control Lett. 2010, 59, 42–47. [Google Scholar] [CrossRef]
- Willems, J.C. Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Autom. Control 1991, 36, 259–294. [Google Scholar] [CrossRef]
- Reissig, G.; Weber, A.; Rungger, M. Feedback Refinement Relations for the Synthesis of Symbolic Controllers. IEEE Trans. Autom. Control 2017, 62, 1781–1796. [Google Scholar] [CrossRef] [Green Version]
- Junge, O.; Osinga, H.M. A set oriented approach to global optimal control. ESAIM Control. Optim. Calc. Var. 2004, 10, 259–270. [Google Scholar] [CrossRef]
- Weber, A. Methoden zur Effizienzsteigerung Abstraktionsbasierter Reglerentwurfsverfahren. Ph.D. Thesis, Universität der Bundeswehr München, Verlag Dr. Hut, München, Germany, 2018. [Google Scholar]
- Settele, F.; Bittner, M. Energy-optimal guidance of a battery-electrically driven airplane. CEAS Aeronaut. J. 2020, 11, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Ranter, H. Airliner Accident Statistics 2006. Aviation Safety Network. 2007. Available online: https://aviation-safety.net/pubs/asn/ASN_Airliner_Accident_Statistics_2006.pdf (accessed on 30 July 2019).
- Flight Safety Foundation. Reducing the Risk of Runway Excursions—Report of the Runway Safety Initiative. 2009. Available online: https://www.skybrary.aero/bookshelf/books/900.pdf (accessed on 18 February 2019).
- Flight International. Accident Reports Issued during the Second Half of 2018. 2019. Available online: https://finreader.flightglobal.com/publications-dist/1263/7943/2301/23183/article.html (accessed on 14 February 2019).
- Srivatsan, R.; Downing, D.R.; Bryant, W.H. Development of a Takeoff Performance Monitoring System; Technical Memorandum; NASA: Hampton, VA, USA, 1986.
- Srivatsan, R.; Downing, D.R.; Bryant, W.H. Development of a takeoff performance monitoring system. J. Guid. Control Dyn. 1987, 10, 433–440. [Google Scholar] [CrossRef]
- Balachandran, S.; Atkins, E.M. An evaluation of flight safety assessment and management to avoid loss of control during takeoff. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, National Harbor, MD, USA, 13–17 January 2014; p. 0785. [Google Scholar]
- Balachandran, S.; Atkins, E.M. Flight safety assessment and management for takeoff using deterministic Moore machines. J. Aerosp. Inf. Syst. 2015, 12, 599–615. [Google Scholar] [CrossRef] [Green Version]
- Raisch, J.; O’Young, S.D. Discrete approximation and supervisory control of continuous systems. IEEE Trans. Autom. Control 1998, 43, 569–573. [Google Scholar] [CrossRef]
- Reißig, G. Computing abstractions of nonlinear systems. IEEE Trans. Autom. Control 2011, 56, 2583–2598. [Google Scholar] [CrossRef] [Green Version]
- Kapela, T.; Zgliczynski, P. A Lohner-type algorithm for control systems and ordinary differential inclusions. Discret. Contin. Dyn. Syst. Ser. B 2009, 11, 365. [Google Scholar] [CrossRef]
- Breitenecker, F. Development of simulation software-from simple ode modelling to structural dynamic systems. In Proceedings of the 22nd European Conference on Modelling and Simulation (ECMS), Nicosia, Cyprus, 3–6 June 2008; pp. 20–37. [Google Scholar]
- Weber, A.; Rungger, M.; Reissig, G. Optimized State Space Grids for Abstractions. IEEE Trans. Autom. Control 2017, 62, 5816–5821. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Mallik, K.; Schmuck, A.; Zufferey, D.; Majumdar, R. Incremental Abstraction Computation for Symbolic Controller Synthesis in a Changing Environment. In Proceedings of the IEEE 58th Conference on Decision and Control (CDC), Nice, France, 11–13 December 2019; pp. 6261–6268. [Google Scholar]
- MATLAB Documentation; MathWorks: Natick, MA, USA, 2019.
Fault i | Increasing of … | ||
---|---|---|---|
1 | motor temperature | 2.5 | 6 |
2 | drag D | 2.5 | 7 |
3 | battery current | 2 | 2 |
Unit | Interval | Resolution | ||
---|---|---|---|---|
States | ||||
Velocity | V | 0.5 | ||
Motor temp. | °C | 0.5 | ||
State of charge | − | 0.004 | ||
Controls | ||||
Lift coefficient | − | 0.067 | ||
Propeller RPM | RPM | 20 | ||
Parameter | ||||
Friction coeff. | − | 0.035 | ||
Headwind | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Settele, F.; Weber, A.; Knoll, A. Plant Model-Based Fault Detection during Aircraft Takeoff Using Non-Deterministic Finite-State Automata. Aerospace 2020, 7, 109. https://doi.org/10.3390/aerospace7080109
Settele F, Weber A, Knoll A. Plant Model-Based Fault Detection during Aircraft Takeoff Using Non-Deterministic Finite-State Automata. Aerospace. 2020; 7(8):109. https://doi.org/10.3390/aerospace7080109
Chicago/Turabian StyleSettele, Ferdinand, Alexander Weber, and Alexander Knoll. 2020. "Plant Model-Based Fault Detection during Aircraft Takeoff Using Non-Deterministic Finite-State Automata" Aerospace 7, no. 8: 109. https://doi.org/10.3390/aerospace7080109
APA StyleSettele, F., Weber, A., & Knoll, A. (2020). Plant Model-Based Fault Detection during Aircraft Takeoff Using Non-Deterministic Finite-State Automata. Aerospace, 7(8), 109. https://doi.org/10.3390/aerospace7080109