Numerical Simulation of the Anti-Icing Performance of Electric Heaters for Icing on the NACA 0012 Airfoil
Abstract
:1. Introduction
2. Numerical Scheme and Validation
2.1. Grid Generation
2.2. Flow Field Computation
2.3. Droplet Trajectory
2.4. Thermodynamics
2.5. Validation of Flow and Heating Simulation
3. Anti-Icing Performance of Heater for NACA 0012
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AoA | Angle of attack |
BBO | Basset–Boussinesq–Oseen |
EMM | Extended Messinger model |
FAA | Federal Aviation Administration |
LWC | Liquid water content |
MEMM | Modified extended Messinger model |
MVD | Median volumetric diameter |
References
- Alekseyenko, S.; Sinapius, M.; Schulz, M.; Prykhodko, O. Interaction of Supercooled Large Droplets with Aerodynamic Profile; Technical Report, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- Takahashi, T.; Fukudome, K.; Mamori, H.; Fukushima, N.; Yamamoto, M. Effect of Characteristic Phenomena and Temperature on Super-Cooled Large Droplet Icing on NACA0012 Airfoil and Axial Fan Blade. Aerospace 2020, 7, 92. [Google Scholar] [CrossRef]
- Macarthur, C. Numerical simulation of airfoil ice accretion. In Proceedings of the 21st Aerospace Sciences Meeting, Reno, NV, USA, 10–13 January 1983; p. 112. [Google Scholar]
- Bidwell, C.S.; Potapczuk, M.G. Users Manual for the NASA Lewis Three-Dimensional Ice Accretion Code (LEWICE 3D); Technical Report, NASA Technical Memorandum 105974; NASA: Washington, DC, USA, 1993.
- Britton, R. Development of an analytical method to predict helicopter main rotorperformance in icing conditions. In Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1992; p. 418. [Google Scholar]
- Hedde, T.; Guffond, D. ONERA three-dimensional icing model. AIAA J. 1995, 33, 1038–1045. [Google Scholar] [CrossRef]
- Gent, R. TRAJICE2-A combined water droplet and ice accretion prediction code for airfoils. R. Aerosp. Establ. TR 1990, 90054. [Google Scholar]
- Mingione, G.; Brandi, V. Ice accretion prediction on multielement airfoils. J. Aircr. 1998, 35, 240–246. [Google Scholar] [CrossRef]
- Jin, J.Y.; Virk, M.S. Study of ice accretion along symmetric and asymmetric airfoils. J. Wind. Eng. Ind. Aerodyn. 2018, 179, 240–249. [Google Scholar] [CrossRef]
- Ibrahim, G.; Pope, K.; Muzychka, Y. Effects of blade design on ice accretion for horizontal axis wind turbines. J. Wind. Eng. Ind. Aerodyn. 2018, 173, 39–52. [Google Scholar] [CrossRef]
- Petty, K.R.; Floyd, C.D. A statistical review of aviation airframe icing accidents in the US. In Proceedings of the 11th Conference on Aviation, Range, and Aerospace, Hyannis, MA, USA, 4–8 October 2004. [Google Scholar]
- Jeck, R.K. Icing Design Envelopes (14 CFR Parts 25 and 29, Appenddix C) Converted to a Distance-Based Format; Technical Report; Federal Aviation Administration Technical Center: Atlantic City, NJ, USA, 2002. [Google Scholar]
- Mason, J. Engine power loss in ice crystal conditions. Aero Q. 2007, 4, 12–17. [Google Scholar]
- Linton, A. Ice Protection System. U.S. Patent 6,848,656, 1 February 2005. [Google Scholar]
- Hannat, R.; Morency, F. Numerical validation of conjugate heat transfer method for anti-/de-icing piccolo system. J. Aircr. 2014, 51, 104–116. [Google Scholar] [CrossRef]
- Addy, H.E.; Oleskiw, M.; Broeren, A.P.; Orchard, D. A study of the effects of altitude on thermal ice protection system performance. In Proceedings of the 5th AIAA Atmospheric and Space Environments Conference, San Diego, CA, USA, 24–27 June 2013; p. 2934. [Google Scholar]
- Loughborough, D.L.; Greene, H.E.; Roush, P.A. A study of wing de-icer performance on mount Washington. Inst. Aero. Sci. 1948. Preprint No. 122. [Google Scholar]
- D’Avirro, J.; Chaput, M.D. Optimizing the Use of Aircraft Deicing and Anti-Icing Fluids; Transportation Research Board: Washington, DC, USA, 2011; Volume 45. [Google Scholar]
- Sulej, A.M.; Polkowska, Ż.; Astel, A.; Namieśnik, J. Analytical procedures for the determination of fuel combustion products, anti-corrosive compounds, and de-icing compounds in airport runoff water samples. Talanta 2013, 117, 158–167. [Google Scholar] [CrossRef]
- Al-Khalil, K.M.; Horvath, C.; Miller, D.R.; Wright, W.B. Validation of NASA Thermal Ice Protection Computer Codes. Part 3. The Validation of Antice. In Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1997. [Google Scholar]
- Reid, T.; Baruzzi, G.S.; Habashi, W.G. FENSAP-ICE: Unsteady conjugate heat transfer simulation of electrothermal de-icing. J. Aircr. 2012, 49, 1101–1109. [Google Scholar] [CrossRef]
- Bu, X.; Lin, G.; Yu, J.; Yang, S.; Song, X. Numerical simulation of an airfoil electrothermal anti-icing system. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2013, 227, 1608–1622. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, Y.; Hu, H.; Hu, H.; Meng, X. Utilization of thermal effect induced by plasma generation for aircraft icing mitigation. AIAA J. 2018, 56, 1097–1104. [Google Scholar] [CrossRef]
- Mu, Z.; Lin, G.; Shen, X.; Bu, X.; Zhou, Y. Numerical simulation of unsteady conjugate heat transfer of electrothermal deicing process. Int. J. Aerosp. Eng. 2018, 2018. [Google Scholar] [CrossRef]
- Asaumi, N.; Mizuno, M.; Tomioka, Y.; Suzuki, K.; Hyugaji, T.; Kimura, S. Experimental Investigation and Simple Estimation of Heat Requirement for Anti-Icing. J. Gas Turbine Soc. Jpn. 2018, 46, 476–485. (In Japanese) [Google Scholar]
- Bu, X.; Lin, G.; Shen, X.; Hu, Z.; Wen, D. Numerical simulation of aircraft thermal anti-icing system based on a tight-coupling method. Int. J. Heat Mass Transf. 2020, 148, 119061. [Google Scholar] [CrossRef]
- Villalpando, F.; Reggio, M.; Ilinca, A. Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software. Energy 2016, 114, 1041–1052. [Google Scholar] [CrossRef]
- Shu, L.; Qiu, G.; Hu, Q.; Jiang, X.; McClure, G.; Liu, Y. Numerical and experimental investigation of threshold de-icing heat flux of wind turbine. J. Wind. Eng. Ind. Aerodyn. 2018, 174, 296–302. [Google Scholar] [CrossRef]
- Özgen, S.; Canıbek, M. Ice accretion simulation on multi-element airfoils using extended Messinger model. Heat Mass Transf. 2009, 45, 305. [Google Scholar] [CrossRef]
- Chung, T. Computational Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Hayashi, R.; Yamamoto, M. Numerical Simulation on Ice Shedding Phenomena in Turbomachinery. J. Energy Power Eng. 2015, 9, 45–53. [Google Scholar]
- Kato, M.; Launder, B.E. The modelling of turbulent flow around stationary and vibrating square cylinders. In Proceedings of the 9th Symposium on Turbulent Shear Flows, Kyoto, Japan, 16–18 August 1993; Volume 1, pp. 10–14. [Google Scholar]
- Yee, H.C. Upwind and Symmetric Shock-Capturing Schemes; NASA-TM-89464; NASA: Washington, DC, USA, 1987.
- Fujii, K.; Obayashi, S. Practical Applications of Improved LU-ADI Scheme for the Three-Dimensional Navier-Stokes Computation of Transonic Viscous Flows; AIAA Paper; AIAA: Reno, NV, USA, 1986; pp. 86–0513. [Google Scholar]
- Schiller, L.; Naumann, A. A drag coefficient correlation. Vdi Zeitung 1935, 77, 318–320. [Google Scholar]
- Sheldahl, R.E.; Klimas, P.C. Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines; Technical Report; Sandia National Labs.: Albuquerque, NM, USA, 1981. [Google Scholar]
- Harris, C.D. Two-Dimensional Aerodynamic Characteristics of the NACA 0012 Airfoil in the Langley 8 Foot Transonic Pressure Tunnel; NASA Langley Research Center: Hampton, VA, USA, 1981.
- Olsen, W.; Shaw, R.; Newton, J. Ice shapes and the resulting drag increase for a NACA 0012 airfoil. In Proceedings of the 22nd Aerospace Sciences Meeting, Reno, NV, USA, 9–12 January 1984; p. 109. [Google Scholar]
- Whalen, E.; Broeren, A.; Bragg, M.; Lee, S. Characteristics of Runback Ice Accretions on Airfoils and their Aerodynamics Effects. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005; p. 1065. [Google Scholar]
- Broeren, A.P.; Bragg, M.B.; Addy, H.E., Jr.; Lee, S.; Moens, F.; Guffond, D. Effect of high-fidelity ice-accretion simulations on full-scale airfoil performance. J. Aircr. 2010, 47, 240–254. [Google Scholar] [CrossRef] [Green Version]
- Blumenthal, L.; Busch, G.; Broeren, A.; Bragg, M. Issues in Ice Accretion Aerodynamic Simulation on a Subscale Model. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006; p. 262. [Google Scholar]
- Lee, S.; Kim, H.; Bragg, M. Investigation of factors that influence iced-airfoil aerodynamics. In Proceedings of the 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2000; p. 99. [Google Scholar]
Airfoil | NACA 0013 | |
---|---|---|
Chord length | [m] | 0.12 |
Angle of attack | [°] | 0 |
Freestream velocity | [m/s] | 30 |
Freestream temperature | [°C] | −8 |
Reynolds number | [-] | 285,000 |
Median volume diameter (MVD) | [m] | 58 |
Liquid water content (LWC) | [g/m3] | 2.8 |
Initial droplet temperature | [°C] | −8 |
Total droplet number | [-] | 1,000,000 |
Exposure time | [s] | 300 |
Ambient pressure | [kPa] | 101.325 |
Heating condition | Constant heat flux | |
Heating region | 0–48% chord | |
Wall material | Titanium | |
Wall thickness | [m] | 6 |
Airfoil | NACA 0012 | |
---|---|---|
Chord length | [m] | 0.53 |
Angle of attack | [°] | 4 |
Freestream velocity | [m/s] | 58.1 |
Freestream temperature | [°C] | −27.8 |
Reynolds number | [-] | 2,800,000 |
Median volume diameter (MVD) | [m] | 18.0 |
Liquid water content (LWC) | [g/m3] | 1.3 |
Initial droplet temperature | [°C] | −27.8 |
Total droplet number | [-] | 1,000,000 |
Exposure time | [s] | 480 |
Ambient pressure | [kPa] | 95.61 |
Heating condition | Constant temperature | |
Heating wall temperature | [°C] | 10.0 |
Heating region | 1–12% chord (Case 1–Case 12) | |
Wall material | Aluminum | |
Wall thickness | [mm] | 10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uranai, S.; Fukudome, K.; Mamori, H.; Fukushima, N.; Yamamoto, M. Numerical Simulation of the Anti-Icing Performance of Electric Heaters for Icing on the NACA 0012 Airfoil. Aerospace 2020, 7, 123. https://doi.org/10.3390/aerospace7090123
Uranai S, Fukudome K, Mamori H, Fukushima N, Yamamoto M. Numerical Simulation of the Anti-Icing Performance of Electric Heaters for Icing on the NACA 0012 Airfoil. Aerospace. 2020; 7(9):123. https://doi.org/10.3390/aerospace7090123
Chicago/Turabian StyleUranai, Sho, Koji Fukudome, Hiroya Mamori, Naoya Fukushima, and Makoto Yamamoto. 2020. "Numerical Simulation of the Anti-Icing Performance of Electric Heaters for Icing on the NACA 0012 Airfoil" Aerospace 7, no. 9: 123. https://doi.org/10.3390/aerospace7090123
APA StyleUranai, S., Fukudome, K., Mamori, H., Fukushima, N., & Yamamoto, M. (2020). Numerical Simulation of the Anti-Icing Performance of Electric Heaters for Icing on the NACA 0012 Airfoil. Aerospace, 7(9), 123. https://doi.org/10.3390/aerospace7090123