Real Time Measurement of Airplane Flutter via Distributed Acoustic Sensing
Abstract
:1. Introduction
2. Qualitative Description of the DAS System
3. Theoretical Background
3.1. Rayleigh Backscattering in a Multimode Optical Fiber
3.2. Flutter and the Aeroelasticity Equation
- and are the generalized coordinates (flap) and (pitch angle);
- is the air density;
- V is the true airspeed;
- m is the mass per unit area of the wing;
- c is the chord length;
- s is the span;
- e is the distance from the flexural axis to the lift center divided by the chord length;
- is the distance from the leading edge of the wing to the flexural axis;
- is the slope of the lift curve;
- is the derivative of the angular moment around the flexural axis;
- is the bending rigidity;
- is flexural (or torsional) rigidity.
4. Experimental Results
4.1. The Experimental Setup
4.2. Flutter Measurements
- = 0.22;
- n = 1.45;
- = 0.18 dB/km, or approximately nepers/m;
- (speed of light in glass fibers).
4.3. Extended Tests
4.3.1. Tests at Different Altitudes
4.3.2. Damping as a Function of Airspeed
4.3.3. Verification of Flutter Frequencies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Wright, J.R.; Cooper, J.E. Introduction to Aircraft Aeroelasticity and Loads; Wiley: New York, NY, USA, 2007. [Google Scholar]
- Battoo, R.S. An introductory guide to literature in aeroelasticity. Aeronaut. J. 1999, 103, 511–518. [Google Scholar] [CrossRef]
- Lind, R.; Brenner, M. Robust Aeroservoelastic Stability Analysis; Springer: London, UK, 1999. [Google Scholar]
- Lind, R.; Brenner, M. The Flutterometer: An On-Line Tool to Predict Robust Flutter Margins. J. Aircr. 2000, 37, 1105–1112. [Google Scholar] [CrossRef] [Green Version]
- Sydenham, P.H. Acceleration Measurement. In Handbook of Measuring System Design; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Hartog, A.H. An Introduction to Distributed Optical Fiber Sensors; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Personick, S.D. Photon Probe—An Optical-Fiber Time Domain Reflectometer. Bell Syst. Tech. J. 1977, 56, 355–366. [Google Scholar] [CrossRef]
- Neumann, E.G. Analysis of the backscattering method for testing optical fiber cables. Arch. Elektr. Ubertragungstechnik (AEU) 1980, 34, 157–160. [Google Scholar]
- Daley, T.M.; Freifeld, B.M.; Franklin, J.A.; Dou, S.; Pevzner, R.; Shulakova, V.; Kashikar, S.; Miller, D.E.; Goetz, J.; Henninges, J.; et al. Field Testing of Fiber-Optic Distributed Acoustic Sensing (DAS) for Subsurface Seismic Monitoring; The Leading Edge; Society of Exploration Geophysicists: Tulsa, OK, USA, 2013; pp. 936–942. [Google Scholar]
- Zhang, X.; Sun, Z.; Shan, Y.; Li, Y.; Wang, F.; Zeng, J.; Zhang, Y. A High Performance Distributed Optical Fiber Sensor Based on Φ-OTDR for Dynamic Strain Measurement. IEEE Photonics J. 2017, 9, 6802412. [Google Scholar] [CrossRef]
- Muanenda, Y.; Oton, C.J.; Faralli, S.; Pasquale, F.D. A Cost-Effective Distributed Acoustic Sensor Using a Commercial Off-the-Shelf DFB Laser and Direct Detection Phase-OTDR. IEEE Photonics J. 2016, 8, 6800210. [Google Scholar] [CrossRef] [Green Version]
- Martins, H.F.; Shi, K.; Thomsen, B.C.; Martin-Lopez, S.; Gonzalez-Herraez, M.; Savory, S.J. Real time dynamic strain monitoring of optical links using the backreflection of live PSK data. Opt. Express 2016, 24, 22303–22318. [Google Scholar] [CrossRef] [PubMed]
- Reinsch, T.; Henninges, J.; Götz, J.; Jousset, P.; Bruhn, D.; Lüth, S. Distributed Acoustic Sensing Technology for Seismic Exploration in Magmatic Geothermal Areas. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015; pp. 1–5. [Google Scholar]
- Dou, S.; Lindsey, N.; Wagner, A.M.; Daley, T.M.; Freifeld, B.; Robertson, M.; Peterson, J.; Ulrich, C.; Martin, E.R.; Ajo-Franklin, J.B. Distributed Acoustic Sensing for Seismic Monitoring of The Near Surface: A Traffic-Noise Interferometry Case Study. Nat. Sci. Rep. 2017, 7, 11620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, T.; Shatalin, S.; Farhadiroushan, M. Distributed Acoustic Sensing—A new tool for seismic applications. First Break 2014, 32, 61–69. [Google Scholar] [CrossRef]
- Bona, A.; Dean, T.; Correa, J.; Pevzner, R.; Tertyshnikov, K.V.; Zaanen, L.V. Amplitude and Phase Response of DAS Receivers. In Proceedings of the 79th EAGE Conference & Exhibition 2017, Paris, France, 12–15 June 2017; p. We A5 13. [Google Scholar]
- Weng, Y.; Ip, E.; Pan, Z.; Wang, T. Advanced Spatial-Division Multiplexed Measurement Systems Propositions—From Telecommunication to Sensing Applications: A Review. Sensors 2016, 16, 1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsey, N.; Martin, E.R.; Dreger, D.S.; Freifeld, B.; Cole, S.; James, S.R.; Biondi, B.L.; Ajo-Franklin, J.B. Fiber-Optic Network Observations of Earthquake Wavefields. Geophys. Res. Lett. 2017, 44, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hayt, W.H.; Buck, J.A. Engineering Electromagnetics; McGraw Hill: New York, NY, USA, 2006. [Google Scholar]
- Datasheet: Application Specific Optical Fibers for Sensors; OFS Fitel: Norcross, GA, USA, 2017.
- Follador, R.D.C.; Souza, C.E.D.; Marto, A.G.; Silva, R.G.A.D.; Góes, L.C.S. Comparison of In-Flight Measured and Computed Aeroelastic Damping: Modal Identification Procedures and Modeling Approaches. J. Aerosp. Technol. Manag. 2016, 8, 163–177. [Google Scholar] [CrossRef]
Mode | Frequency | Airspeed |
---|---|---|
Bending | 5.1 Hz | M 0.63 |
Bending/Torsion | 7.8 Hz | M 0.75 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhoum, E.G.; Zhang, C.; Cheng, M.H. Real Time Measurement of Airplane Flutter via Distributed Acoustic Sensing. Aerospace 2020, 7, 125. https://doi.org/10.3390/aerospace7090125
Bakhoum EG, Zhang C, Cheng MH. Real Time Measurement of Airplane Flutter via Distributed Acoustic Sensing. Aerospace. 2020; 7(9):125. https://doi.org/10.3390/aerospace7090125
Chicago/Turabian StyleBakhoum, Ezzat G., Cheng Zhang, and Marvin H. Cheng. 2020. "Real Time Measurement of Airplane Flutter via Distributed Acoustic Sensing" Aerospace 7, no. 9: 125. https://doi.org/10.3390/aerospace7090125
APA StyleBakhoum, E. G., Zhang, C., & Cheng, M. H. (2020). Real Time Measurement of Airplane Flutter via Distributed Acoustic Sensing. Aerospace, 7(9), 125. https://doi.org/10.3390/aerospace7090125