The Two-Point Boundary-Value Problem for Rocket Trajectories
Abstract
:1. Introduction
2. Three Methods of Calculation of Gravity Turn
2.1. Method III: Iterative Use of Initial Conditions in Taylor Series
- (i)
- the variation of mass with time, Equation (2b), corresponds to a constant, Equation (2a), propellant rate:
- (ii)
- the acceleration of gravity is assumed to be uniform, and the altitude coordinate z is taken opposite to it; (iii) the thrust matrix, Equation (3a) is constant for thrust T, angle-of-attack and angle of the thrust with the rocket axis:
- (iii)
- the aerodynamic matrix (3b) is constant for constant angle-of-attack and lift and drag coefficients; (iv) the aerodynamic forces are proportional to the square of the velocity and to the atmospheric mass density; (v) the latter decays exponentially (4b) on the scale height ℓ for an isothermal atmosphere with scale height (4a), viz.:
2.2. Method I: Mass Fraction of Burned Fuel as the Time Variable
2.3. Method II: Ratio of Atmospheric Mass Densities as Altitude Variable
3. General Approach to the Two-Point Boundary-Value Problem (TPBVP)
3.1. Smooth Matching of Ascending and Descending Trajectories
- (i)
- an ascending solution for increasing time starting at lift-off up to burn-out
- (ii)
- a descending solution for decreasing time starting at burn-out
3.2. Feasibility of Desired Burn-Out Condition for Payload Launch
3.3. Performance Envelope at Burn-Out Condition for Payload Launch
- (i)
- (ii)
- (iii)
- (iv)
4. Trajectory for a Given Horizontal Velocity at Burn-Out
4.1. Matching Time as a Root of the Series Solution
4.2. Rocket Data Required for Trajectory Calculation
4.3. Combination of Methods I and II for the TPBVP
5. Second Alternative Set of Matching Conditions for the TPBVP
5.1. Alternative Choices of Ascent Trajectories for Matching up to Burn-Out
5.2. Matching Distinct Ascending Solutions to the Same Descending Solution
5.3. Trajectory Matching outside the Burn Range
6. Six Trajectories of the TPBVP Using Three Pairs of Solutions
6.1. Matching of the Third Pair of Solutions in Two Forms
6.2. Third Set of Matching Condition for TPBVP Trajectories
6.3. Third Trajectory with Specified Horizontal Velocity at Burn-Out
- (i)
- (ii)
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lawden, D.F. Rocket trajectory optimization—1950–1963. J. Guid. Control Dyn. 1991, 14, 705–711. [Google Scholar] [CrossRef]
- Manohar, D.R.; Krishnan, S. Trajectory reconstruction during thrusting phase of rockets using differential corrections. J. Guid. Control Dyn. 1985, 8, 406–408. [Google Scholar] [CrossRef]
- Buchanan, G.; Wright, D.; Hann, C.; Bryson, H.; Snowdon, M.; Rao, A.; Slee, A.; Sültrop, H.P.; Jochle-Rings, B.; Barker, Z.; et al. The Development of Rocketry Capability in New Zealand–World Record Rocket and First of Its Kind Rocketry Course. Aerospace 2015, 2, 91. [Google Scholar] [CrossRef]
- da Cás, P.L.K.; Veras, C.A.G.; Shynkarenko, O.; Leonardi, R. A Brazilian Space Launch System for the Small Satellite Market. Aerospace 2019, 6, 123. [Google Scholar] [CrossRef] [Green Version]
- Bryson, H.; Sültrop, H.P.; Buchanan, G.; Hann, C.; Snowdon, M.; Rao, A.; Slee, A.; Fanning, K.; Wright, D.; McVicar, J.; et al. Vertical Wind Tunnel for Prediction of Rocket Flight Dynamics. Aerospace 2016, 3, 10. [Google Scholar] [CrossRef]
- Messineo, J.; Shimada, T. Theoretical Investigation on Feedback Control of Hybrid Rocket Engines. Aerospace 2019, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Silveira, G.d.; Carrara, V. A Six Degrees-of-Freedom Flight Dynamics Simulation Tool of Launch Vehicles. J. Aerosp. Technol. Manag. 2015, 7, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Trevisi, F.; Poli, M.; Pezzato, M.; Iorio, E.D.; Madonna, A.; Bressanin, N.; Debei, S. Simulation of a sounding rocket flight’s dynamic. In Proceedings of the 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Padua, Italy, 21–23 June 2017; pp. 296–300. [Google Scholar]
- Lawden, D.F. Calculation of singular extremal rocket trajectories. J. Guid. Control Dyn. 1992, 15, 1361–1365. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, S.; Xiong, F. Rapid ascent trajectory optimization for guided rockets via sequential convex programming. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 4800–4809. [Google Scholar] [CrossRef]
- Xiong, J.; Tang, S.; Guo, J.; Wu, X. Rapid ascent trajectory optimization for a solid rocket engine vehicle. In Proceedings of the 2013 IEEE Third International Conference on Information Science and Technology (ICIST), Yangzhou, China, 23–25 March 2013; pp. 142–145. [Google Scholar]
- Palaia, G.; Pallone, M.; Pontani, M.; Teofilatto, P. Accurate Modeling and Heuristic Trajectory Optimization of Multistage Launch Vehicles. In Proceedings of the 3rd IAA Conference on Dynamics and Control of Space Systems, Moscow, Russia, 30 May–1 June 2017; pp. 809–824. [Google Scholar]
- Azimov, D.M. Active Rocket Trajectory Arcs: A Review. Autom. Remote Control 2005, 66, 1715. [Google Scholar] [CrossRef]
- Betts, J.T. Survey of Numerical Methods for Trajectory Optimization. J. Guid. Control Dyn. 1998, 21, 193–207. [Google Scholar] [CrossRef]
- Ross, I.M. An analysis of first-order singular thrust-arcs in rocket trajectory optimization. Acta Astronaut. 1996, 39, 417–422. [Google Scholar] [CrossRef]
- Azimov, D.M. Analytic solutions for intermediate-thrust arcs of rocket trajectories in a Newtonian field. J. Appl. Math. Mech. 1996, 60, 421–427. [Google Scholar] [CrossRef]
- Martinon, P.; Bonnans, F.; Laurent-Varin, J.; Trelat, E. Numerical Study of Optimal Trajectories with Singular Arcs for an Ariane 5 Launcher. J. Guid. Control Dyn. 2009, 32, 51–55. [Google Scholar] [CrossRef]
- Gath, P.F.; Well, K.H.; Mehlem, K. Initial Guess Generation for Rocket Ascent Trajectory Optimization Using Indirect Methods. J. Spacecr. Rocket. 2002, 39, 515–521. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Mori, T. Optimal Conceptual Design of Two-Stage Reusable Rocket Vehicles Including Trajectory Optimization. J. Spacecr. Rocket. 2004, 41, 770–778. [Google Scholar] [CrossRef]
- Kiforenko, B.N. Singular Optimal Controls of Rocket Motion (Survey). Int. Appl. Mech. 2017, 53, 237–286. [Google Scholar] [CrossRef]
- Campos, L.M.B.C.; Gil, P.J.S. On Four New Methods of Analytical Calculation of Rocket Trajectories. Aerospace 2018, 5, 88. [Google Scholar] [CrossRef] [Green Version]
- Culler, G.J.; Fried, B.D. Universal Gravity Turn Trajectories. J. Appl. Phys. 1957, 28, 672–676. [Google Scholar] [CrossRef]
- Thomson, W.T. Introduction to Space Dynamics, 2nd ed.; Dover: Mineola, NY, USA, 1986. [Google Scholar]
- Miele, A. Flight Mechanics; Addison-Wesley: Boston, MA, USA, 1962; Volume 2. [Google Scholar]
- Connor, M.A. Gravity turn trajectories through the atmosphere. J. Spacecr. Rocket. 1966, 3, 1308–1311. [Google Scholar] [CrossRef]
- Sotto, E.D.; Teofilatto, P. Semi-Analytical Formulas for Launcher Performance Evaluation. J. Guid. Control Dyn. 2002, 25, 538–545. [Google Scholar] [CrossRef]
- Rutherford, D.E. Classical Mechanics, 2nd ed.; Oliver and Boyd: Edinburgh, UK, 1967. [Google Scholar]
- Miele, A. Method of particular solutions for linear, two-point boundary-value problems. J. Optim. Theory Appl. 1968, 2, 260–273. [Google Scholar] [CrossRef]
- Miele, A.; Pritchard, R.E.; Damoulakis, J.N. Sequential gradient-restoration algorithm for optimal control problems. J. Optim. Theory Appl. 1970, 5, 235–282. [Google Scholar] [CrossRef]
- Ariane 5. Available online: https://en.wikipedia.org/wiki/Ariane_5 (accessed on 10 June 2020).
- Ariane 5-VA226-Launch Profile. Available online: https://spaceflight101.com/ariane-5-va226/ariane-5-va226-launch-profile/ (accessed on 10 June 2020).
Symbol | Meaning | Value | Unit |
---|---|---|---|
Environment | |||
g | acceleration of gravity | 9.81 | |
sea level mass density | 1.225 | ||
ℓ | atmospheric scale height | ||
Propulsion | |||
T | thrust | ||
c | propellant flow rate | ||
propellant mass | |||
burn time | |||
Aerodynamics | |||
initial mass | |||
S | cross-sectional area | 3.76 x 10 | |
drag coefficient | 0.15 | * | |
lift coefficient | 0.10 | * | |
Calculated parameters | |||
reference mass | |||
a | weight parameter | 5.533 × 10 | * |
b | thrust parameter | * | |
f | aerodynamic parameter | * | |
reference time | |||
reference velocity | 6.789 × 10 | ||
Calculated matrices | |||
trust | aerodynamic | ||
1.128 × 102 | 0.118 | ||
−3.94 | 0.073 | ||
1.128102 | 0.118 |
Pair of Methods * | |
---|---|
I + II (Section 4) | III + II (Section 5) |
3.85 × 101 | |
−1.80 × 102 | |
2.17 × 102 | 5.94 × 10−3 |
7.88 × 101 | 6.37 × 10−3 |
−1.88 × 104 | −1.88 × 104 |
−7.98 × 103 | −7.98 × 103 |
Expression | Value | Unit |
---|---|---|
0.366 | ||
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
M. B. C. Campos, L.; Gil, P.J.S. The Two-Point Boundary-Value Problem for Rocket Trajectories. Aerospace 2020, 7, 131. https://doi.org/10.3390/aerospace7090131
M. B. C. Campos L, Gil PJS. The Two-Point Boundary-Value Problem for Rocket Trajectories. Aerospace. 2020; 7(9):131. https://doi.org/10.3390/aerospace7090131
Chicago/Turabian StyleM. B. C. Campos, Luís, and Paulo J. S. Gil. 2020. "The Two-Point Boundary-Value Problem for Rocket Trajectories" Aerospace 7, no. 9: 131. https://doi.org/10.3390/aerospace7090131
APA StyleM. B. C. Campos, L., & Gil, P. J. S. (2020). The Two-Point Boundary-Value Problem for Rocket Trajectories. Aerospace, 7(9), 131. https://doi.org/10.3390/aerospace7090131