Evaluation of Anti-Icing Performance for an NACA0012 Airfoil with an Asymmetric Heating Surface
Abstract
:1. Introduction
2. Icing Simulation
2.1. Numerical Procedure
2.2. Validation for HAARP-II Airfoil
3. Results and Discussion
3.1. Computational Condition
3.2. Anti-Icing and Aerodynamic Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petty, K.R.; Floyd, C.D. A statistical review of aviation airframe icing accidents in the US. In Proceedings of the 11th Conference on Aviation, Range, and Aerospace, Hyannis, MA, USA, 7 October 2004. [Google Scholar]
- Jeck, R.K. Icing Design Envelopes (14 CFR Parts 25 and 29, Appenddix C) Converted to a Distance-Based Format; Technical Report; Federal Aviation Administration Technical Center: Atlantic City, NJ, USA, 2002. [Google Scholar]
- Mason, J. Engine power loss in ice crystal conditions. Aero Quartely 2007, 4, 12–17. [Google Scholar]
- Beaugendre, H.; Morency, F.; Habashi, W.G. FENSAP-ICE’s three-dimensional in-flight ice accretion module: ICE3D. J. Aircr. 2003, 40, 239–247. [Google Scholar] [CrossRef]
- Villedieu, P.; Trontin, P.; Guffond, D.; Bobo, D. SLD Lagrangian modeling and capability assessment in the frame of ONERA 3D icing suite. In Proceedings of the 4th AIAA Atmospheric and Space Environments Conference, New Orleans, LA, USA, 25–28 January 2012; p. 3132. [Google Scholar]
- Alekseyenko, S.; Sinapius, M.; Schulz, M.; Prykhodko, O. Interaction of Supercooled Large Droplets with Aerodynamic Profile; Technical Report; SAE Technical Paper: Warrendale, PA, USA, 2015. [Google Scholar]
- Takahashi, T.; Fukudome, K.; Mamori, H.; Fukushima, N.; Yamamoto, M. Effect of Characteristic Phenomena and Temperature on Super-Cooled Large Droplet Icing on NACA0012 Airfoil and Axial Fan Blade. Aerospace 2020, 7, 92. [Google Scholar] [CrossRef]
- Bae, J.; Yee, K. Numerical Investigation of Droplet Breakup Effects on Droplet–Wall Interactions Under SLD Conditions. Int. J. Aeronaut. Space Sci. 2001, 22, 1005–1018. [Google Scholar] [CrossRef]
- Messinger, B.L. Equilibrium temperature of an unheated icing surface as a function of air speed. J. Aeronaut. Sci. 1953, 20, 29–42. [Google Scholar] [CrossRef]
- Myers, T.G. Extension to the Messinger model for aircraft icing. AIAA J. 2001, 39, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Myers, T.; Charpin, J.; Thompson, C. Slowly accreting ice due to supercooled water impacting on a cold surface. Phys. Fluids 2002, 14, 240–256. [Google Scholar] [CrossRef]
- Özgen, S.; Canıbek, M. Ice accretion simulation on multi-element airfoils using extended Messinger model. Heat Mass Transf. 2009, 45, 305. [Google Scholar] [CrossRef]
- Iwago, M.; Fukudome, K.; Mamori, H.; Fukushima, N.; Yamamoto, M. Fundamental investigation to predict ice crystal icing in jet engine. Recent Asian Res. Therm. Fluid Sci. 2020, 305–318. [Google Scholar]
- Linton, A. Ice Protection System. US Patent 6848656, 2005. [Google Scholar]
- Hannat, R.; Morency, F. Numerical validation of conjugate heat transfer method for anti-/de-icing piccolo system. J. Aircr. 2014, 51, 104–116. [Google Scholar] [CrossRef]
- Addy, H.E.; Oleskiw, M.; Broeren, A.P.; Orchard, D. A study of the effects of altitude on thermal ice protection system performance. In Proceedings of the 5th AIAA Atmospheric and Space Environments Conference, San Diego, CA, USA, 24–27 June 2013; p. 2934. [Google Scholar]
- Loughborough, D.L.; Green, H.E.; Roush, P.A. A Study of Wing De-Icer Performance on Mount Washington. Aero. Eng. Rev 1948, 7, 41–50. [Google Scholar]
- D’Avirro, J.; Chaput, M.D. Optimizing the Use of Aircraft Deicing and Anti-Icing Fluids; Transportation Research Board: Washington, DC, USA, 2011; Volume 45. [Google Scholar]
- Sulej, A.M.; Polkowska, Ż.; Astel, A.; Namieśnik, J. Analytical procedures for the determination of fuel combustion products, anti-corrosive compounds, and de-icing compounds in airport runoff water samples. Talanta 2013, 117, 158–167. [Google Scholar] [CrossRef]
- Al-Khalil, K.M.; Horvath, C.; Miller, D.R.; Wright, W.B. Validation of NASA Thermal Ice Protection Computer Codes. Part 3; The Validation of Antice. In Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1997. [Google Scholar]
- Harireche, O.; Verdin, P.; Thompson, C.P.; Hammond, D.W. Explicit finite volume modeling of aircraft anti-icing and de-icing. J. Aircr. 2008, 45, 1924–1936. [Google Scholar] [CrossRef]
- Reid, T.; Baruzzi, G.S.; Habashi, W.G. FENSAP-ICE: Unsteady conjugate heat transfer simulation of electrothermal de-icing. J. Aircr. 2012, 49, 1101–1109. [Google Scholar] [CrossRef]
- Bu, X.; Lin, G.; Yu, J.; Yang, S.; Song, X. Numerical simulation of an airfoil electrothermal anti-icing system. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2013, 227, 1608–1622. [Google Scholar] [CrossRef]
- Lei, G.; Dong, W.; Zhu, J.; Zheng, M. Numerical Investigation of the Electrothermal De-Icing Process of a Rotor Blade; Technical Report; SAE Technical Paper: Warrendale, PA, USA, 2015. [Google Scholar]
- Mu, Z.; Lin, G.; Shen, X.; Bu, X.; Zhou, Y. Numerical simulation of unsteady conjugate heat transfer of electrothermal deicing process. Int. J. Aerosp. Eng. 2018, 2018, 5362541. [Google Scholar] [CrossRef]
- Asaumi, N.; Mizuno, M.; Tomioka, Y.; Suzuki, K.; Hyugaji, T.; Kimura, S. Experimental Investigation and Simple Estimation of Heat Requirement for Anti-Icing. J. Gas Turbine Soc. Jpn. 2018, 46, 476–485. (In Japanese) [Google Scholar]
- Shen, X.; Guo, Q.; Lin, G.; Zeng, Y.; Hu, Z. Study on loose-coupling methods for aircraft thermal anti-Icing system. Energies 2020, 13, 1463. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Liu, Y.; Hu, H.; Hu, H.; Meng, X. Utilization of thermal effect induced by plasma generation for aircraft icing mitigation. AIAA J. 2018, 56, 1097–1104. [Google Scholar] [CrossRef]
- Uranai, S.; Fukudome, K.; Mamori, H.; Fukushima, N.; Yamamoto, M. Numerical Simulation of the Anti-Icing Performance of Electric Heaters for Icing on the NACA 0012 Airfoil. Aerospace 2020, 7, 123. [Google Scholar] [CrossRef]
- Chung, T. Computational Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Kato, M. The modelling of turbulent flow around stationary and vibrating square cylinders. Turbul. Shear. Flow 1993, 1, 10.4.1–10.4.6. [Google Scholar]
- Yee, H.C. Upwind and Symmetric Shock-Capturing Schemes; NASA-TM-89464; NASA: Washington, DC, USA, 1987. [Google Scholar]
- Fujii, K.; Obayashi, S. Practical applications of new LU-ADI scheme for the three-dimensional Navier-Stokes computation of transonic viscous flows. In Proceedings of the 24th Aerospace Sciences Meeting, Reno, NV, USA, 6–9 January 1986; p. 513. [Google Scholar]
- Schiller, L.; Naumann, A. A drag coefficient correlation. Vdi Ztg. 1935, 77, 318–320. [Google Scholar]
- Papadakis, M.; Wong, S.H.; Yeong, H.W.; Wong, S.C.; Vu, G. Icing tunnel experiments with a hot air anti-icing system. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 7–10 January 2008; p. 444. [Google Scholar]
- Olsen, W.; Shaw, R.; Newton, J. Ice shapes and the resulting drag increase for a NACA 0012 airfoil. In Proceedings of the 22nd Aerospace Sciences Meeting, Reno, NV, USA, 9–12 January 1984; p. 109. [Google Scholar]
Airfoil | HAARP-II | |
---|---|---|
Chord length | (m) | 1.524 |
Attack angle | (deg.) | 3.0 |
Inlet flow velocity | (m/s) | 59.2 |
Static temperature | (C) | |
MVD | (m) | 29 |
LWC | (g/m) | 0.87 |
Exposure time | (s) | 1350 |
Airfoil | NACA0012 | |
---|---|---|
Chord length | (m) | 0.53 |
Attack angle | (deg.) | 4.0 |
Inlet flow velocity | (m/s) | 58.1 |
Static temperature | (C) | |
MVD | (m) | 12 |
LWC | (g/m) | 1.08 |
Exposure time | (s) | 300 |
Heating surface temperature | (C) | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukudome, K.; Tomita, Y.; Uranai, S.; Mamori, H.; Yamamoto, M. Evaluation of Anti-Icing Performance for an NACA0012 Airfoil with an Asymmetric Heating Surface. Aerospace 2021, 8, 294. https://doi.org/10.3390/aerospace8100294
Fukudome K, Tomita Y, Uranai S, Mamori H, Yamamoto M. Evaluation of Anti-Icing Performance for an NACA0012 Airfoil with an Asymmetric Heating Surface. Aerospace. 2021; 8(10):294. https://doi.org/10.3390/aerospace8100294
Chicago/Turabian StyleFukudome, Koji, Yuki Tomita, Sho Uranai, Hiroya Mamori, and Makoto Yamamoto. 2021. "Evaluation of Anti-Icing Performance for an NACA0012 Airfoil with an Asymmetric Heating Surface" Aerospace 8, no. 10: 294. https://doi.org/10.3390/aerospace8100294
APA StyleFukudome, K., Tomita, Y., Uranai, S., Mamori, H., & Yamamoto, M. (2021). Evaluation of Anti-Icing Performance for an NACA0012 Airfoil with an Asymmetric Heating Surface. Aerospace, 8(10), 294. https://doi.org/10.3390/aerospace8100294