Multi-Mode Interferometry: Application to TiO2–SiO2 Sol-Gel Waveguide-Based Sensing in the Aerospace Domain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sol-Gel Elaboration
2.2. Creation of TiO2–SiO2 Photonic Devices
2.3. Characterization of TiO2–SiO2 Devices
2.4. Simulation Tools: Waveguides and MMI Couplers
3. Results and Discussion
3.1. Creation of TiO2–SiO2 Waveguides by Direct Laser Writing Technique
3.2. Optical Fiber and Sol-Gel Waveguide Coupling: Simulation of Connection Losses
3.3. 1 × 3 MMI Coupler Simulation
3.4. TiO2–SiO2 MMI Couplers Manufacturing
3.5. Creation of 1 × 3 and 1 × 9 MMI Couplers
3.6. Toward the Development of More Compact Architectures (1 × 45)
3.7. Behavior of TiO2–SiO2 Waveguides with Respect to Several Thermal Cycles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Güemes, A.; Fernandez-Lopez, A.; Pozo, A.R.; Sierra-Pérez, J. Structural Health Monitoring for Advanced Composite Struc-tures: A Review. J. Compos. Sci. 2020, 4, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Bezas, K.; Komianos, V.; Koufoudakis, G.; Tsoumanis, G.; Kabassi, K.; Oikonomou, K. Structural Health Monitoring in His-torical Buildings: A Network Approach. Heritage 2020, 3, 796–818. [Google Scholar] [CrossRef]
- Kumberg, T.; Schneid, S.; Reindl, L. A Wireless Sensor Network Using GNSS Receivers for a Short-Term Assessment of the Modal Properties of the Neckartal Bridge. Appl. Sci. 2017, 7, 626. [Google Scholar] [CrossRef] [Green Version]
- Dong, T.; Kim, N.H. Cost-Effectiveness of Structural Health Monitoring in Fuselage Maintenance of the Civil Aviation Industry. Aerospace 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Bhuiyan, M.Y.; Giurgiutiu, V. Multiphysics Simulation of Low-Amplitude Acoustic Wave Detection by Piezoelectric Wafer Active Sensors Validated by In-Situ AE-Fatigue Experiment. Materials 2017, 10, 962–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smithard, J.; Rajic, N.; Van Der Velden, S.; Norman, P.; Rosalie, C.; Galea, S.; Mei, H.; Lin, B.; Giurgiutiu, V. An Advanced Multi-Sensor Acousto-Ultrasonic Structural Health Monitoring System: Development and Aerospace Demonstration. Mater. 2017, 10, 832. [Google Scholar] [CrossRef] [Green Version]
- Di Sante, R. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications. Sensors 2015, 15, 18666–18713. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, Y.H.; Park, K.S.; Eom, J.B.; Kim, M.J.; Rho, B.S.; Choi, H.Y. Interferometric Fiber Optic Sensors. Sensors 2012, 12, 2467–2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, N.; Okabe, Y.; Mizutani, T. Damage detection in composites using optical fibre sensors. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2007, 221, 497–508. [Google Scholar] [CrossRef]
- Royon, M.; Jamon, D.; Blanchet, T.; Royer, F.; Vocanson, F.; Marin, E.; Morana, A.; Boukenter, A.; Ouerdane, Y.; Jourlin, Y.; et al. Sol–Gel Waveguide-Based Sensor for Structural Health Monitoring on Large Surfaces in Aerospace Domain. Aerosp. 2021, 8, 109. [Google Scholar] [CrossRef]
- Hench, L.L.; West, J.K. The Sol-Gel Process. Chem. Rev. 1990, 90, 33–72. [Google Scholar] [CrossRef]
- Jerónimo, P.C.; Araújo, A.N.; Montenegro, M. Optical sensors and biosensors based on sol–gel films. Talanta 2007, 72, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Gelover, S.; Mondragón, P.; Jiménez, A. Titanium Dioxide Sol-Gel Deposited Over Glass and Its Application as a Photocatalyst for Water Decontamination. J. Photochem. Photobiol. A 2003, 165, 241–246. [Google Scholar] [CrossRef]
- Oubaha, M.; Kribich, R.K.; Copperwhite, R.; Etienne, P.; O’Dwyer, K.; MacCraith, B.D.; Moreau, Y. New Inorganic Sol-Gel Material with High Transparency at 1.55 µm. Opt. Commun. 2005, 253, 346–351. [Google Scholar] [CrossRef]
- Coudray, P.; Etienne, P.; Moreau, Y. Integrated optics based on organo-mineral materials. Mater. Sci. Semicond. Process. 2000, 3, 331–337. [Google Scholar] [CrossRef]
- Fardad, M.; Mishechkin, O.; Fallahi, M. Hybrid sol-gel materials for integration of optoelectronic components. J. Light. Technol. 2001, 19, 84–91. [Google Scholar] [CrossRef]
- Royon, M.; Vocanson, F.; Jamon, D.; Marin, E.; Morana, A.; Boukenter, A.; Girard, S.; Ouerdane, Y.; Royer, F.; Jourlin, Y. Comparison between the UV and X-ray Photosensitivities of Hybrid TiO2-SiO2 Thin Layers. Materials 2020, 13, 3730–3739. [Google Scholar] [CrossRef]
- Soldano, L.B.; Pennings, E.C.M. Optical multi-mode interference devices based on self-imaging: Principles and applications. J. Light. Technol. 1995, 13, 615–627. [Google Scholar] [CrossRef] [Green Version]
- Bachmann, M.; Besse, P.A.; Melchior, H. General Self-Imaging Properties in N x N Multimode Interference Couplers Including Phase Relations. Appl. Opt. 1994, 33, 3905–3911. [Google Scholar] [CrossRef]
- Hill, M.M.; Leijtens, X.; Khoe, G.G.-D.; Smit, M.M. Optimizing imbalance and loss in 2 x 2 3-db multimode interference couplers via access waveguide width. J. Light. Technol. 2003, 21, 2305–2313. [Google Scholar] [CrossRef]
- Franc, J.; Blanc, D.; Zerroukhi, A.; Chalamet, Y.; Last, A.; Destouches, N. Organo-silica–titania nanocomposite elaborated by sol–gel processing with tunable optical properties. Mater. Sci. Eng. B 2006, 129, 180–185. [Google Scholar] [CrossRef]
- Royon, M.; Vocanson, F.; Jamon, D.; Royer, F.; Marin, E.; Morana, A.; Campanella, C.; Boukenter, A.; Ouerdane, Y.; Jourlin, Y.; et al. Impact of γ-rays Irradiation on Hybrid TiO2-SiO2 Sol-Gel Films Doped with RHODAMINE 6G. Materials 2021, 14, 5754–5765. [Google Scholar] [CrossRef] [PubMed]
- Ștefan, S.; Antonescu, B.; Urlea, A.; Buzdugan, L.; Andrei, M.; Necula, C.; Voinea, S. Study of Clear Air Turbulence Related to Tropopause Folding over the Romanian Airspace. Atmosphere 2020, 11, 1099. [Google Scholar] [CrossRef]
Waveguide Width (µm) | X-Axis Misalignment (µm) | Connection Losses (%) |
---|---|---|
10 | 0 | 15 |
10 | 1 | 15 |
10 | 4 | 35 |
10 | 8 | 95 |
30 | 0 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Royon, M.; Blanchet, T.; Adnan, M.; Jamon, D.; Royer, F.; Vocanson, F.; Marin, E.; Morana, A.; Boukenter, A.; Ouerdane, Y.; et al. Multi-Mode Interferometry: Application to TiO2–SiO2 Sol-Gel Waveguide-Based Sensing in the Aerospace Domain. Aerospace 2021, 8, 401. https://doi.org/10.3390/aerospace8120401
Royon M, Blanchet T, Adnan M, Jamon D, Royer F, Vocanson F, Marin E, Morana A, Boukenter A, Ouerdane Y, et al. Multi-Mode Interferometry: Application to TiO2–SiO2 Sol-Gel Waveguide-Based Sensing in the Aerospace Domain. Aerospace. 2021; 8(12):401. https://doi.org/10.3390/aerospace8120401
Chicago/Turabian StyleRoyon, Maxime, Thomas Blanchet, Muhammad Adnan, Damien Jamon, François Royer, Francis Vocanson, Emmanuel Marin, Adriana Morana, Aziz Boukenter, Youcef Ouerdane, and et al. 2021. "Multi-Mode Interferometry: Application to TiO2–SiO2 Sol-Gel Waveguide-Based Sensing in the Aerospace Domain" Aerospace 8, no. 12: 401. https://doi.org/10.3390/aerospace8120401
APA StyleRoyon, M., Blanchet, T., Adnan, M., Jamon, D., Royer, F., Vocanson, F., Marin, E., Morana, A., Boukenter, A., Ouerdane, Y., Jourlin, Y., Evenblij, R., Van Leest, T., Wankhade, A., De Smet, M. -A., Atherton, K., & Girard, S. (2021). Multi-Mode Interferometry: Application to TiO2–SiO2 Sol-Gel Waveguide-Based Sensing in the Aerospace Domain. Aerospace, 8(12), 401. https://doi.org/10.3390/aerospace8120401