Sensitivity Study of Ice Accretion Simulation to Roughness Thermal Correction Model
Abstract
:1. Introduction
2. Physical Set-Up
2.1. Convective Heat Transfers over a Rough Flat Plate
2.2. Air Mathematical Models
2.3. Ice Accretion Model
3. Uncertainty Quantification and Sensitivity Analysis Method
3.1. Uncertain Parameter Sampling and Metamodel
3.2. Sobol Indexes Definition
4. Results and Discussion
4.1. Precision of the Metamodels Generated
4.2. Outputs of Interest PDFs
4.3. Sensitivity Analysis: Calculation of the Sobol Sensitivity Indexes
4.3.1. Sensitivity to the Roughness Parameters
4.3.2. Sensitivity of the Ice Accretion to the Roughness Parameters and the Freestream Temperature
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Cf | friction coefficient |
Cp | heat capacity at constant pressure of air (J/(kg·K)) |
E(V(Y|Xi)) | mean of the conditional variance for Xi fixed |
E(V(Y|Xi, Xj)) | mean of the conditional variance for Xi and Xj fixed |
g | parameter for the 2PP formulation |
hc | convective heat transfer coefficient (W/m2/K) |
hw | wall heat flux (W/m2) |
k | roughness height (m) |
ks | equivalent sand grain roughness (m) |
mass rate (kg/m2/s) | |
M(X) | metamodel function |
Ma | Mach number |
Pr | laminar Prandtl number |
Prt | turbulent Prandtl number |
specific energy rate (W/m2) | |
Res | roughness Reynolds number |
Scorr | wetted corrected surface ratio |
Si | first-order Sobol index |
Si,j | second-order Sobol index |
STi | total Sobol index |
T | temperature (K) |
T+ | non-dimensional temperature |
Trec | recovery temperature (K) |
Tw | wall temperature (K) |
u | velocity (m/s) |
u+ | non-dimensional velocity |
uτ | shear velocity (m/s) |
V | variance |
Xi | input component |
y | coordinate normal to the wall (m) |
Yi | output of interest |
yα | coefficients for the PCE decomposition |
α | multi-index for the PCE decomposition |
γ | heat capacity ratio of air |
ΔPrt | turbulent Prandtl number shift |
ΔT+ | non-dimensional temperature shift |
Δu+ | non-dimensional velocity shift |
κ | Von Karman constant |
ν | kinematic viscosity (m2/s) |
τw | wall shear stress (N/m2) |
ψα(X) | multivariate polynomial for the PCE decomposition |
Subscripts | |
conv | convective |
es | evaporation/sublimation |
ice | ice growth |
imp | impinging water |
in | entering runback water |
kin | kinetic energy |
out | exiting runback water |
Rough | rough surface |
Smooth | smooth surface |
w | wall |
References
- Tagawa, G.D.; Morency, F.; Beaugendre, H. CFD study of airfoil lift reduction caused by ice roughness. In Proceedings of the 2018 Applied Aerodynamics Conference, Atlanta, Georgia, 25–29 June 2018. [Google Scholar] [CrossRef]
- Jones, S.M.; Reveley, M.S.; Evans, J.K.; Barrientos, F.A. Subsonic Aircraft Safety Icing Study; Center, N.L.R., Ed.; NASA: Hampton, VA, USA, 2008; p. 45.
- Bragg, M.B.; Broeren, A.P.; Blumenthal, L.A. Iced-airfoil aerodynamics. Prog. Aerosp. Sci. 2005, 41, 323–362. [Google Scholar] [CrossRef]
- Saeed, F. State-of-the-Art Aircraft Icing and Anti-Icing Simulation. ARA J. 2002, 2000, 106–113. [Google Scholar]
- Rto/Nato, Ice Accretion Simulation Evaluation Test; Research and Technlology Organization: Neuilly sur Seine, France, 2001; p. 32.
- Messinger, B.L. Equilibrium Temperature of an Unheated Icing Surface as a Function of Air Speed. J. Aeronaut. Sci. 1953, 20, 29–42. [Google Scholar] [CrossRef]
- Lavoie, P.; Pena, D.; Hoarau, Y.; Laurendeau, E. Comparison of thermodynamic models for ice accretion on airfoils. Int. J. Numer. Methods Heat Fluid Flow 2018, 28, 1004–1030. [Google Scholar] [CrossRef]
- Ignatowicz, K.; Morency, F.; Beaugendre, H. Numerical simulation of ice accretion using Messinger-based approach: Effects of surface roughness. In CASI AERO 2019; CASI: Laval, QC, Canada, 2019. [Google Scholar]
- Cao, Y.; Ma, C.; Zhang, Q.; Sheridan, J. Numerical simulation of ice accretions on an aircraft wing. Aerosp. Sci. Technol. 2012, 23, 296–304. [Google Scholar] [CrossRef]
- Newton, E.; James Vanfossen, J.; Poinsatte, G.; Dewitt, K. Measurement of Local Convective Heat Transfer Coefficients from a Smooth and Roughened NACA-0012 Airfoil: Flight Test Data, in 26th Aerospace Sciences Meeting; NASA: Reno, Nevada, 1988.
- Poinsatte, P.E.; Fossen, G.J.V.; Witt, K.J.D. Roughness effects on heat transfer from a NACA 0012 airfoil. J. Aircr. 1991, 28, 908–911. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, H. An experimental investigation on the unsteady heat transfer process over an ice accreting airfoil surface. Int. J. Heat Mass Transf. 2018, 122, 707–718. [Google Scholar] [CrossRef]
- Hosni, M.H.; Coleman, H.W.; Garner, J.W.; Taylor, R.P. Roughness element shape effects on heat transfer and skin friction in rough-wall turbulent boundary layers. Int. J. Heat Mass Transf. 1993, 36, 147–153. [Google Scholar] [CrossRef]
- Dukhan, N.; Masiulaniec, K.C.; Witt, K.J.D.; Fossen, G.J.V. Experimental Heat Transfer Coefficients from Ice-Roughened Surfaces for Aircraft Deicing Design. J. Aircr. 1999, 36, 948–956. [Google Scholar] [CrossRef]
- Dukhan, N.; Masiulaniec, K.C.; Witt, K.J.D.; Fossen, G.J.V. Acceleration Effect on the Stanton Number for Castings of Ice-Roughened Surfaces. J. Aircr. 1999, 36, 896–898. [Google Scholar] [CrossRef]
- Hansman, R.; Yamaguchi, K.; Berkowitz, B.; Potapczuk, M. Modeling of Surface Roughness Effects on Glaze Ice Accretion. J. Thermophys. Heat Transf. 1989, 5. [Google Scholar] [CrossRef] [Green Version]
- Fortin, G. Equivalent Sand Grain Roughness Correlation for Aircraft Ice Shape Predictions; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Aupoix, B. Improved heat transfer predictions on rough surfaces. Int. J. Heat Fluid Flow 2015, 56, 160–171. [Google Scholar] [CrossRef]
- Morency, F.; Beaugendre, H. Comparison of turbulent Prandtl number correction models for the Stanton evaluation over rough surfaces. Int. J. Comput. Fluid Dyn. 2020. [Google Scholar] [CrossRef]
- Sudret, B.; Marelli, S.; Wiart, J. Surrogate models for uncertainty quantification: An overview. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017. [Google Scholar] [CrossRef]
- Marelli, S.; Sudret, B. UQLab user manual—Polynomial chaos expansions. In Chair of Risk, Safety and Uncertainty Quantification; ETH: Zurich, Switzerland, 2019. [Google Scholar]
- Cinnella, P.; Congedo, P.M.; Parussini, L.; Pediroda, V. Quantification of Thermodynamic Uncertainties in Real Gas Flows. Int. J. Eng. Syst. Model. Simul. 2010, 2. [Google Scholar] [CrossRef]
- Weissenbrunner, A.; Fiebach, A.; Schmelter, S.; Bär, M.; Thamsen, P.U.; Lederer, T. Simulation-based determination of systematic errors of flow meters due to uncertain inflow conditions. Flow Meas. Instrum. 2016, 52, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, J.A.; Romero, V.J.; Schafer, S.R.; Leyde, B.; Denham, C.L. Approaches for Quantifying Uncertainties in Computational Modeling for Aerospace Applications. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar] [CrossRef]
- Schaefer, J.A.; Cary, A.W.; Mani, M.; Spalart, P.R. Uncertainty Quantification and Sensitivity Analysis of SA Turbulence Model. Coefficients in Two and Three Dimensions. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar] [CrossRef]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis: The Primer; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 304. [Google Scholar] [CrossRef]
- Chen, W.; Jin, R. Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty. J. Mech. Des. 2005, 127. [Google Scholar] [CrossRef]
- Chan, K.; Saltelli, A.; Tarantola, S. Sensitivity Analysis of Model. Output: Variance-based Methods Make the Difference. In Proceedings of the 1997 Winter Conference, Atlanta, Georgia, 7–10 December 1997; pp. 261–268. [Google Scholar] [CrossRef]
- Tabatabaei, N.; Raisee, M.; Cervantes, M.J. Uncertainty Quantification of Aerodynamic Icing Losses in Wind Turbine with Polynomial Chaos Expansion. J. Energy Resour. Technol. 2019, 141. [Google Scholar] [CrossRef]
- Kato, H.; Ito, K.; Lepot, I. Sensitivity analysis based on high fidelity simulation: Application to hypersonic variable-cycle engine intake design. Int. J. Eng. Syst. Model. Simul. 2010, 2. [Google Scholar] [CrossRef]
- Zhu, P.; Yan, Y.; Song, L.; Li, J.; Feng, Z. Uncertainty Quantification of Heat Transfer for a Highly Loaded Gas Turbine Blade Endwall Using Polynomial Chaos. In Proceedings of the ASME Turbo. Expo. 2016: Turbomachinery Technical Conference and Exposition, Seoul, Korea, 13–17 June 2016. [Google Scholar] [CrossRef]
- Prince Raj, L.; Yee, K.; Myong, R.S. Sensitivity of ice accretion and aerodynamic performance degradation to critical physical and modeling parameters affecting airfoil icing. Aerosp. Sci. Technol. 2020, 98. [Google Scholar] [CrossRef]
- Degennaro, A.M.; Rowley, C.W.; Martinelli, L. Uncertainty Quantification for Airfoil Icing Using Polynomial Chaos Expansions. J. Aircr. 2015, 52, 1404–1411. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.F.; Barton, R.R.; Joshi, S.B. Metamodeling: Radial basis functions, versus polynomials. Eur. J. Oper. Res. 2002, 138, 142–154. [Google Scholar] [CrossRef]
- Economon, T.D.; Palacios, F.; Copeland, S.R.; Lukaczyk, T.W.; Alonso, J.J. SU2: An Open-Source Suite for Multiphysics Simulation and Design. AIAA J. 2015, 54, 828–846. [Google Scholar] [CrossRef]
- Yanxia, D.; Yewei, G.; Chunhua, X.; Xian, Y. Investigation on heat transfer characteristics of aircraft icing including runback water. Int. J. Heat Mass Transf. 2010, 53, 3702–3707. [Google Scholar] [CrossRef]
- Aupoix, B.; Spalart, P.R. Extensions of the Spalart–Allmaras turbulence model to account for wall roughness. Int. J. Heat Fluid Flow 2003, 24, 454–462. [Google Scholar] [CrossRef]
- Nikuradse, J. Laws of flow in rough pipes. VDI Forsch. 1933, 4, 63. [Google Scholar]
- Radenac, E.; Kontogiannis, A.; Bayeux, C.; Villedieu, P. An extended rough-wall model for an integral boundary layer model intended for ice accretion calculations. In Proceedings of the 2018 Atmospheric and Space Environments Conference, Atlanta, Georgia, 25 June 2018. [Google Scholar] [CrossRef]
- Özgen, S.; Canıbek, M. Ice accretion simulation on multi-element airfoils using extended Messinger model. Heat Mass Transf. 2008, 45, 305. [Google Scholar] [CrossRef]
- Ignatowicz, K.; Morency, F.; Beaugendre, H. Simulations numériques de changement de phase appliquées au givrage en aéronautique. In Proceedings of the XIVème Colloque International Franco-Québécois en énergie, Baie-Saint-Paul QC, Canada, 6–20 June 2019. [Google Scholar]
- Wright, W.B.; Struk, P.; Bartkus, T.; Addy, G. Recent Advances in the LEWICE Icing Model; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Stein, M. Large sample properties of simulations using latin hypercube sampling. Technometrics 1987, 29, 143–151. [Google Scholar] [CrossRef]
- Solaï, E.; Beaugendre, H.; Congedo, P.-M.; Daccord, R.; Guadagnini, M. Numerical Simulation of a Battery Thermal Management System Under Uncertainty for a Racing Electric Car. In La Simulation Pour la Mobilité Électrique; NAFEMS: Paris, France, 2019. [Google Scholar]
- Blatman, G.; Sudret, B. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probabilistic Eng. Mech. 2010, 25, 183–197. [Google Scholar] [CrossRef]
- Jung, S.; Raj, L.P.; Rahimi, A.; Jeong, H.; Myong, R.S. Performance evaluation of electrothermal anti-icing systems for a rotorcraft engine air intake using a meta model. Aerosp. Sci. Technol. 2020, 106, 106174. [Google Scholar] [CrossRef]
Parameter Xi | Minimum | Maximum | Distribution |
---|---|---|---|
k (mm) | 0.41 | 4.32 | Uniform |
Ratio ks/k | 0.288 | 0.753 | Uniform |
Scorr | 1 | 2.5 | Uniform |
Metamodel | Input Parameters Xj | Output of Interest Yi | |
---|---|---|---|
HAX | 2PP | ||
M1 | k, ks/k, Scorr, x | k, ks/k, x | Convective heat transfer coefficient value at position x |
M2 | k, ks/k, Scorr | k, ks/k | Maximum ice accretion thickness |
M3 | k, ks/k, Scorr | k, ks/k | Ice accretion extension |
Metamodel | Output of Interest Yi | LOO Error | |
---|---|---|---|
HAX | 2PP | ||
M1 | Heat transfer coefficient value at 11.36 cm | 4.25 × 10−4 | 2.15 × 10−4 |
M2 | Maximum ice accretion thickness | 4.12 × 10−3 | 1.05 × 10−4 |
M3 | Ice accretion extension | 1.52 × 10−2 | 4.49 × 10−4 |
120 Samples NIPCE Prediction | 10,000 Samples NIPCE Prediction |
---|---|
μ = 0.0522 m [0.0512; 0.0531] σ = 0.0052 [0.0046; 0.0059] | μ = 0.0521 m [0.0520; 0.0522] σ = 0.0047 [0.0046; 0.0047] |
Metamodel | Output of Interest Yi | Output PDFs’ Parameters | |
---|---|---|---|
HAX | 2PP | ||
M1 | Heat transfer coefficient at x = 11.36 cm | μ = 544.2 W/m2 K [542.1; 546.3] σ = 106.0 W/m2 K [104.8; 107.7] | μ = 430.8 W/m2 K [430.2;431.3] σ = 27.8 W/m2 K [27.4; 28.2] |
M2 | Maximum ice accretion thickness | μ = 0.0264 m [0.0263; 0.0265] σ = 0.0046 m [0.0046; 0.0047] | μ = 0.0218 m [0.0218; 0.0218] σ = 0.0017 m [0.0017; 0.0017] |
M3 | Ice accretion extension | μ = 0.0512 m [0.0511; 0.0513] σ = 0.0061 m [0.0061; 0.0062] | μ = 0.0521 m [0.0520; 0.0522] σ = 0.0047 m [0.0046; 0.0047] |
Metamodel | Output of Interest Y | Total Sobol Sensitivity Indexes | |
---|---|---|---|
HAX | 2PP | ||
M1 | Heat transfer coefficient at x = 11.36 cm | k: 0.239 ks/k: 0.051 Scorr: 0.787 | k: 0.820 ks/k: 0.271 |
M1 | Heat transfer coefficient at x = 14.29 cm | k: 0.239 ks/k: 0.050 Scorr: 0.787 | k: 0.802 ks/k: 0.291 |
M1 | Heat transfer coefficient at x = 27.48 cm | k: 0.248 ks/k: 0.052 Scorr: 0.779 | k: 0.756 ks/k: 0.341 |
M2 | Maximum ice accretion thickness | k: 0.326 ks/k: 0.072 Scorr: 0.682 | k: 0.894 ks/k: 0.202 |
M3 | Ice extension | k: 0.166 ks/k: 0.088 Scorr: 0.822 | k: 0.912 ks/k: 0.288 |
Metamodel | Input Parameters Xj | Output of Interest Yi | |
---|---|---|---|
HAX | 2PP | ||
M2T | k, ks/k, Scorr, T | k, ks/k, T | Maximum ice accretion thickness |
M3T | k, ks/k, Scorr, T | k, ks/k, T | Ice accretion extension |
Metamodel | Output of Interest Y | Total Sobol Sensitivity Indexes | |
---|---|---|---|
HAX | 2PP | ||
M2T | Maximum ice accretion thickness | k: 0.302 ks/k: 0.067 Scorr: 0.667 T: 0.039 | k: 0.750 ks/k: 0.170 T: 0.162 |
M3T | Ice extension | k: 0.190 ks/k: 0.050 Scorr: 0.784 T: 0.022 | k: 0.681 ks/k: 0.255 T: 0.176 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignatowicz, K.; Morency, F.; Beaugendre, H. Sensitivity Study of Ice Accretion Simulation to Roughness Thermal Correction Model. Aerospace 2021, 8, 84. https://doi.org/10.3390/aerospace8030084
Ignatowicz K, Morency F, Beaugendre H. Sensitivity Study of Ice Accretion Simulation to Roughness Thermal Correction Model. Aerospace. 2021; 8(3):84. https://doi.org/10.3390/aerospace8030084
Chicago/Turabian StyleIgnatowicz, Kevin, François Morency, and Héloïse Beaugendre. 2021. "Sensitivity Study of Ice Accretion Simulation to Roughness Thermal Correction Model" Aerospace 8, no. 3: 84. https://doi.org/10.3390/aerospace8030084
APA StyleIgnatowicz, K., Morency, F., & Beaugendre, H. (2021). Sensitivity Study of Ice Accretion Simulation to Roughness Thermal Correction Model. Aerospace, 8(3), 84. https://doi.org/10.3390/aerospace8030084