Exploring the Habitability of Venus: Conceptual Design of a Small Atmospheric Probe
Abstract
:1. Introduction
1.1. Mission Background
1.2. Missions to the Atmosphere of Venus
1.3. Space Raman Devices
1.4. Venus Atmospheric Conditions
2. Proposed Mission Scenario
2.1. Mission Objectives
- TR1: The mission shall be able to determine the atmospheric conditions and composition, particularly the presence and abundance of phosphine and other relevant biomarkers in the atmosphere of Venus at altitudes between 40 and 70 km.
- TR2: The UV absorption characteristics shall be analysed in different atmospheric regions of Venus.
- TR3: The mission shall be feasible within a budget of a maximum of 50 million Euro (ESA S-class mission).
- TR4: The mission shall achieve flight readiness level in less than 4 years.
- TR5: Commercial off-the-shelf (COTS) components should be used wherever possible, to demonstrate their suitability for space exploration missions.
- TR6: The probe’s lifetime in the atmosphere of Venus shall be a minimum of two weeks.
2.2. Flight Opportunities
3. Probe Design
3.1. Science Optical Payload
- The UV laser source is separated using beam-splitters to transport the emitted light in free space into the different regions of study:
- –
- One of the beams is directed into a small probe side cavity (a few mm). Across the cavity, designed to stabilise the atmosphere, the device performs transmission Raman. On the opposite side of the cavity, the receiving optics guide the incoming light into the spectrometer. The instrument would be able to provide a more accurate study of single proximity molecules and possible amino acids.
- –
- The other beam is directed through an aperture into the atmosphere. The laser illuminates a few tens of metres and the fluorescence signal is collected with a small telescope (around 100 mm aperture).
- Both fluorescence and Raman signals are joined using a beam combiner. The incoming signals are independently analysed using a single spectrometer. The Raman signal is used to study the chemical bonds and possible functional groups of the molecules, while the fluorescence signal is focused on electronic structure to analyse aromatics and aldehydes [56].
3.2. Power
3.2.1. Option 1: Non-Rechargeable Cells, No Solar Arrays
Battery Sizing
Architecture
3.2.2. Option 2: Rechargeable Cells and Solar Arrays
Battery Sizing
Solar Array Sizing
Architecture
3.2.3. Selected Option and Performance
3.3. Thermal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cockell, C.S. Life on Venus. Planet. Space Sci. 1999, 47, 1487–1501. [Google Scholar] [CrossRef]
- Grinspoon, D.H.; Bullock, M.A. Astrobiology and Venus Exploration. In Exploring Venus as a Terrestrial Planet; Esposito, L.W., Stofan, E.R., Cravens, T.E., Eds.; Wiley: New York, NY, USA, 2007. [Google Scholar] [CrossRef] [Green Version]
- Limaye, S.S.; Mogul, R.; Smith, D.J.; Ansari, A.H.; Słowik, G.P.; Vaishampayan, P. Venus’ Spectral Signatures and the Potential for Life in the Clouds. Astrobiology 2018, 18, 1181–1198. [Google Scholar] [CrossRef] [PubMed]
- Limaye, S.; Bullock, M.A.; Baines, K.H.; Cockell, C.; Cordova, J.A.; Cutts, J.A.; Way, M.J. Venus, an Astrobiology Target. Bull. AAS 2021, 53. [Google Scholar] [CrossRef]
- Otroshchenko, V.A.; Surkov, Y.A. The possibility of organic molecule formation in the Venus atmosphere, Origins of life. Springer Exobiol. 1974, 5, 487–490. [Google Scholar] [CrossRef]
- Taylor, F.W.; Svedhem, H.; Head, J.W. Venus: The Atmosphere, Climate, Surface, Interior and Near-Space Environment of an Earth-Like Planet. Space Sci. Rev. 2018, 214. [Google Scholar] [CrossRef] [Green Version]
- Seager, S.; Petkowski, J.J.; Goa, P.; Bains, W.; Ranjan, S.; Greaves, J. The Venusian Lower Atmosphere Haze as a Depot for Desiccated Microbial Life: A Proposed Life Cycle for Persistence of the Venusian Aerial Biosphere. Astrobiology 2020. [Google Scholar] [CrossRef]
- Andreichikov, B.M.; Mukhin, L.M.; Korchuganov, B.N.; Akhmetshin, I.K.; Tokarev, E.N.; Medvedev, A.V.; Goldfeld, M.N.; Fajnbojm, V.M.; Kalyuzhnyj, A.V.; Petryanov, I.N.; et al. Element Abundances in Venus Aerosols by X-ray Radiometry—Preliminary Results. Pisma Astron. Zhurnal 1986, 12, 120–122. [Google Scholar]
- Greaves, J.S.; Richards, A.M.S.; Bains, W.; Rimmer, P.B.; Sagawa, H.; Clements, D.L.; Seager, S.; Petkowski, J.J.; Sousa-Silva, C.; Ranjan, S.; et al. Phosphine gas in the cloud decks of Venus. Nat. Astron. 2020. [Google Scholar] [CrossRef]
- Frandsen, B.N.; Wennberg, P.O.; Kjaergaard, H.G. Identification of OSSO as a near-UV absorber in the Venusian atmosphere. Geophys. Res. Lett. 2016, 43. [Google Scholar] [CrossRef] [Green Version]
- Bullock, M.A.; Senske, D.A.; Balint, T.S.; Benz, A.; Campbell, B.A.; Chassefiere, E.; Colaprete, A.; Cutts, J.A.; Glaze, L.; Gorevan, S.; et al. A Venus Flagship Mission: Report of the Venus Science and Technology Definition Team. In Proceedings of the 40th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 23–27 March 2009. [Google Scholar]
- Venera-D. Available online: https://www.esa.int/About_Us/ESA_Permanent_Mission_in_Russia/Venera-D (accessed on 17 June 2021).
- Report of the Venera-D Join Science Definition Team. Venera-D: Expanding Our Horizon of terrestrial Planet Climate and Geology through the Comprehensive Exploration of Venus. Available online: http://iki.rssi.ru/events/2017/venera_d.pdf (accessed on 17 June 2021).
- NASA Venus CubeSat. Available online: https://www.nasa.gov/feature/goddard/2017/nasa-studies-cubesat-mission-to-solve-venusian-mystery (accessed on 17 June 2021).
- NASA Venus Probe. Available online: https://www.nasa.gov/feature/goddard/2020/nasa-goddard-team-selected-to-design-concept-for-probe-of-mysterious-venus-atmosphere (accessed on 17 June 2021).
- NASA Venus S/C. Available online: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1967-060A (accessed on 17 June 2021).
- NASA Vega 2 Balloon. Available online: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1984-128F (accessed on 17 June 2021).
- NASA Pioneer. Available online: https://solarsystem.nasa.gov/missions/pioneer-venus-2/in-depth/ (accessed on 17 June 2021).
- Nakamura, M.; Titov, D.; McGouldrick, K.; Drossart, P.; Bertaux, J.; Liu, H. Special issue Akatsuki at Venus: The First Year of Scientific Operation. Earth Planets Space 2018, 70, 1–3. [Google Scholar] [CrossRef]
- ESA Selects Revolutionary Venus Mission EnVision (June 2021). Available online: https://www.esa.int/Science_Exploration/Space_Science/ESA_selects_revolutionary_Venus_mission_EnVision (accessed on 21 June 2021).
- NASA Selects 2 Missions to Study ’Lost Habitable’ World of Venus (June 2021). Available online: https://www.nasa.gov/press-release/nasa-selects-2-missions-to-study-lost-habitable-world-of-venus (accessed on 21 June 2021).
- EnVision, Understanding Why Earth’s Closest Neighbour Is So Different (Feb 2021). Available online: https://www.cosmos.esa.int/documents/5763359/5763378/EnVision_YB_final.pdf/e9612355-67de-42a3-c25a-af1683f6fda3?t=1616679461807 (accessed on 21 June 2021).
- Angel, S.M.; Gomer, N.R.; Sharma, S.K.; McKay, C. Remote Raman Spectroscopy for Planetary Exploration: A Review. Appl. Spectrosc. 2012, 66, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Ribes-Pleguezuelo, P.; Sansano-Caramazanam, A.; Strese, H.; Maresi, L. UV-BIOmarker Mapper Raman optical instrument for Venus AtmosPhere (UV-BIOMAP). In Proceedings of the International Conference on Space Optics—ICSO 2020, Virtual, 30 March–2 April 2021. [Google Scholar]
- Bhartia, R.; Salas, E.C.; Hug, W.F.; Reid, R.D.; Lane, A.L.; Edwards, K.J.; Nealson, K.H. Label-Free Bacterial Imaging with Deep-UV-Laser-Induced Native Fluorescence. Am. Soc. Microbiol. J. 2010, 76, 7231–7237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, A.K.; Sharma, S.K.; Lucey, P.G. Remote Raman Spectroscopic Detection of Minerals and Organics Under Illuminated Conditions from a Distance of 10 m Using a Single 532 nm Laser Pulse. Appl. Spectrosc. 2006, 60, 223–228. [Google Scholar] [CrossRef]
- Beegle, L.; Bhartia, R.; White, M.; DeFlores, L.; Abbey, W.; Wu, Y.H.; Cameron, B.; Moore, J.; Fries, M.; Burton, A.; et al. SHERLOC: Scanning habitable environments with Raman and luminescence for organics and chemicals. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015; pp. 1–11. [Google Scholar] [CrossRef]
- Ribes-Pleguezuelo, P.; Guilhot, D.; Gilaberte Basset, M.; Beckert, E.; Eberhardt, R.; Tünnermann, A. Insights of the Qualified ExoMars Laser and Mechanical Considerations of Its Assembly Process. Instruments 2019, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Venus Temperature Profile. Available online: https://www.esa.int/Science_Exploration/Space_Science/Venus_Express/The_unexpected_temperature_profile_of_Venus_s_atmosphere (accessed on 18 June 2021).
- Taylor, F.W.; Hunten, D.M. Venus: Atmosphere. In Encyclopedia of the Solar System; Spohn, T., Breuer, D., Johnson, T.V., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 305–322. [Google Scholar]
- Tellmann, S.; Pätzold, M.; Häusler, B.; Bird, M.K.; Tyler, G.L. Structure of the Venus neutral atmosphere as observed by the Radio Science experiment VeRa on Venus Express. J. Geophys. Res. 2009, 114, E9. [Google Scholar] [CrossRef]
- Kliore, A.J.; Moroz, V.I. The Venus International Reference Atmosphere . In Advances in Space Research; Keating, G.M., Ed.; Elsevier Science Pub Co.: Amsterdam, The Netherlands, 1985; ISBN 0-08-034631-6. [Google Scholar]
- Lebonnois, S.; Schubert, G. The deep atmosphere of Venus and the possible role of density-driven separation of CO2 and N2. Nat. Geosci. 2017, 10, 473–477. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, R.; Machado, P.; Widemann, T.; Peralta, J.; Watanabe, S.; Yamazaki, A.; Satoh, T.; Takagi, M.; Ogohara, K.; Lee, Y.; et al. Venus’ cloud top wind study: Coordinated Akatsuki/UVI with cloud tracking and TNG/HARPS-N with Doppler velocimetry observations. Icarus 2020, 335, 113418. [Google Scholar] [CrossRef]
- Gonçalves, R.; Machado, P.; Widemann, T.; Brasil, F.; Ribeiro, J. A Wind Study of Venus’s Cloud Top: New Doppler Velocimetry Observations. Atmosphere 2021, 12, 2. [Google Scholar] [CrossRef]
- Machado, P.; Widemann, T.; Peralta, J.; Gilli, G.; Espadinha, D.; Silva, J.E.; Brasil, F.; Ribeiro, J.; Gonçalves, R. Venus Atmospheric Dynamics at Two Altitudes: Akatsuki and Venus Express Cloud Tracking, Ground-Based Doppler Observations and Comparison with Modelling. Atmosphere 2021, 12, 506. [Google Scholar] [CrossRef]
- Wilson, C.F.; Widemann, T. Venus: Key to understanding the evolution of terrestrial planets, White paper: L2/L3 Missions in the ESA science programme. arXiv 2013, arXiv:1908.04269. [Google Scholar]
- Wilson, C.F.; Chassefière, E.; Hinglais, E.; Baines, K.H.; Balint, T.S.; Berthelier, J.; Blamont, H.; Durry, G.; Ferencz, C.S.; Grimm, R.E.; et al. The 2010 European Venus Explorer (EVE) mission proposal. Exp. Astron. 2012, 33, 305–335. [Google Scholar] [CrossRef]
- Greaves, J.S.; Richards, A.M.S.; Bains, W.; Rimmer, P.B.; Clements, D.L.; Seager, S.; Petkowski, J.J.; Sousa-Silva, C.; Ranjan, S.; Fraser, H.J. Re-analysis of Phosphine in Venus’ Clouds. arXiv 2020, arXiv:2011.08176v2. [Google Scholar]
- Snellen, I.A.G.; Guzman-Ramirez, L.; Hogerheijde, M.R.; Hygate, A.P.S.; van der Tak, F.F.S. Re-analysis of the 267 GHz ALMA observations of Venus—No statistically significant detection of phosphine. Astron. Astrophys. 2020, 644, L2. [Google Scholar] [CrossRef]
- Thompson, M.A. The statistical reliability of 267-GHz JCMT observations of Venus: No significant evidence for phosphine absorption. Mon. Not. R. Astron. Soc. Lett. 2021, 501, L18–L22. [Google Scholar] [CrossRef]
- Oschlisniok, J.; Häusler, B.; Pätzold, M.; Tellmann, S.; Bird, M.K.; Peter, K.; Andert, T.P. Sulfuric acid vapor and sulfur dioxide in the atmosphere of Venus as observed by the Venus Express radio science experiment VeRa, Ground-Based Doppler Observations and Comparison with Modelling. Icarus 2021, 362, 114405. [Google Scholar] [CrossRef]
- Von Zahn, U.; Moroz, V.I. Composition of the Venus atmosphere below 100 km altitude. Adv. Space Res. 1985, 5, 173–195. [Google Scholar] [CrossRef]
- EnVision. Available online: https://sites.lesia.obspm.fr/envision/ (accessed on 18 June 2021).
- NASA Mars 2020, SHERLOC. Available online: https://mars.nasa.gov/mars2020/spacecraft/instruments/sherloc/ (accessed on 18 June 2021).
- Caffrey, M.; Boyd, K.; Gasway, D.; McGlown, J.; Michel, J.; Nelson, A.; Newell, R.; Peterson, G.; Quinn, H.; Sackos, J.; et al. The Processing Electronics and Detector of the Mars 2020 SHERLOC Instrument. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020. [Google Scholar] [CrossRef]
- Kerzhanovich, V.V.; Cutts, J.A.; Hall, J.L. Low-cost balloon missions to Mars and Venus. In Proceedings of the 16th ESA Symposium on European Rocket and Balloons St. Gallen, Sankt Gallen, Switzerland, 2–5 June 2003. [Google Scholar]
- Blamont, J. Planetary balloons. Exp. Astron. 2008, 22, 1–39. [Google Scholar] [CrossRef]
- Babu, K.M.K.; Pant, R.S. A review of Lighter-than-Air systems for exploring the atmosphere of Venus. Prog. Aerosp. Sci. 2020, 122, 100587. [Google Scholar] [CrossRef]
- McDaniels, K.; Downs, R.J.; Meldner, H.; Beach, C.; Adams, C. High strength-to-weight ratio non-woven technical fabrics for aerospace applications. AIAA Balloon Syst. Conf. 2009, 117, 430–439. [Google Scholar] [CrossRef]
- Yavrouian, A.; Plett, G.; Yen, S.; Cutts, J.; Baek, D. Evaluation of materials for Venus aerobot applications. In Proceedings of the International Balloon Technology Conference, Norfolk, VA, USA, 1 November 1999. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.L.; Baines, K.H.; Zahnle, K.J.; Limaye, S.; Atreya, S.K. Exploring Venus with Balloons—Science Objectives and Mission Architectures for Small and Medium-Class Missions. In Proceedings of the Sixth International Planetary Probe Workshop, Atlanta, GA, USA, 21–27 June 2008. [Google Scholar]
- Doherty, K.; Carton, J.G.; Norman, A.; McCaul, T.; Twomey, B.; Stanton, K.T. A thermal control surface for the Solar Orbiter. Acta Astronaut. 2015, 117. [Google Scholar] [CrossRef]
- Coustenis, A.; Atreya, S.K.; Balint, T.; Brown, R.H.; Dougherty, M.K.; Ferri, F.; Fulchignoni, M.; Gautier, D.; Gowen, R.A.; Griffith, C.A.; et al. TandEM: Titan and Enceladus mission. Exp. Astron. 2009, 23, 893–946. [Google Scholar] [CrossRef] [Green Version]
- Los Alamos National Laboratory. Searching for life on Europa. Available online: https://www.lanl.gov/discover/publications/connections/2018/2018-12/science.php (accessed on 18 June 2021).
- Hug, W.F.; Nguyen, Q.; Reid, M.; Sijapati, K.; Reid, R.D. Deep UV Raman and fluorescence spectroscopy for real-time in-situ process monitoring. Proc. SPIE Next-Gener. Spectrosc. Technol. XIII 2020, 11390, 113900X. [Google Scholar] [CrossRef]
- RP-Photonics UV Lasers. Available online: https://www.rp-photonics.com/ultraviolet_lasers.html (accessed on 18 June 2021).
- Guilhot, D.; Ribes-Pleguezuelo, P. Laser Technology in Photonic application for Space. Instruments 2019, 3, 50. [Google Scholar] [CrossRef] [Green Version]
- Wessels, P.; Büttner, A.; Ernst, M.; Hunnekuhl, M.; Kalms, R.; Willemsen, L.; Kracht, D.; Neumann, J. UV-DPSS Laser Flight Model for the MOMA Instrument of the ExoMars 2020 Mission. Proc. SPIE 2019, 11180, 111801B. [Google Scholar] [CrossRef] [Green Version]
- Storrie-Lombardi, M.C.; Hug, W.F.; McDonald, G.D.; Tsapin, A.I.; Nealson, K.H. Hollow cathode ion lasers for deep ultraviolet Raman spectroscopy and fluorescence imaging. Rev. Sci. Instruments 2001, 72, 4452–4459. [Google Scholar] [CrossRef]
- Photonsystems—Space Qualified Deep. Available online: https://photonsystems.com/space-qualified/ (accessed on 18 June 2021).
- Fahey, M.; Yu, A.; Grubisic, A.; Getty, S.; Arevalo, R.; Li, X.; Liu, R.; Mamakos, W. Ultraviolet Laser Development for Planetary Lander Missions. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020. [Google Scholar] [CrossRef]
- Space Cameras. Available online: https://microcameras.space/cameras/ (accessed on 18 June 2021).
- Cho, D.H.; Choi, W.S.; Kim, M.K.; Kim, J.H.; Sim, E.; Kim, H.D. High-resolution image and video CubeSat (HiREV): Development of space technology test platform using a low-cost CubeSat platform. Int. J. Aerosp. Eng. 2019, 2019, 8916416. [Google Scholar] [CrossRef]
- SAFT Batteries, Selection Guide. Available online: https://www.saftbatteries.com/products-solutions/products/ls-lsh-lsp (accessed on 18 June 2021).
- Landis, G.A.; Haag, E. Analysis of Solar Cell Efficiency for Venus Atmosphere and Surface Missions. In Proceedings of the AIAA 11th International Energy Conversion Engineering Conference, San Jose, CA, USA, 15–17 July 2013. [Google Scholar] [CrossRef] [Green Version]
- Nanoavionics EPS. Available online: https://nanoavionics.com/cubesat-components/cubesat-electrical-power-system-eps/ (accessed on 18 June 2021).
- AAC Clyde-Space Starbuck-Nano EPS. Available online: https://www.aac-clyde.space/assets/000/000/188/AAC_DataSheet_Starbuck-Nano_original.pdf?1613580363 (accessed on 18 June 2021).
- Limaye, S.S.; Grassi, D.; Mahieux, A.; Migliorini, A.; Tellmann, S.; Titov, D. Venus Atmospheric Thermal Structure and Radiative Balance. J. Space Sci Rev. 2018, 214, 102. [Google Scholar] [CrossRef] [Green Version]
- Balint, T.; Cutts, J.; Bullock, M.; Garvin, J.; Gorevan, S.; Hall, J.; Hughes, P.; Hunter, G.; Khanna, S.; Kolawa, E.; et al. Technologies for Future Venus Exploration. VEXAG. In Venus Technology White Paper; Venus Exploration Analysis Group: Washington, DC, USA, 2009. [Google Scholar]
- Lefèvre, M.; Lebonnois, S.; Spiga, A. Three-Dimensional Turbulence-Resolving Modeling of the Venusian Cloud Layer and Induced Gravity Waves: Inclusion of Complete Radiative Transfer and Wind Shear. J. Geophys. Res. 2018, 123, 2773–2789. [Google Scholar] [CrossRef] [Green Version]
Gas | Abundance |
---|---|
Carbon Dioxide (CO) | 96.5% |
Nitrogen (N) | 3.5% |
Sulfur Dioxide (SO) | 10–260 ppm |
Argon (Ar) | 20–200 ppm |
Water Vapour (HO) | 20–30 ppm |
Carbon Monoxide (CO) | 17–40 ppm |
Helium (He) | 12–17 ppm |
Neon (Ne) | 5–7 ppm |
Device/Instrument | Power [W] | Mass [kg] |
---|---|---|
(Added Individual Margin) | (Added Individual Margin) | |
Science payload 1 | ||
Payload Raman | ||
(UV laser/Telescope/Spectrometer) | 55.0 (10%) | 1.7 (5%) |
Science payload 2 | ||
High-resolution camera | ||
(Imperx B3412) | 5.4 (5%) | <0.3 |
Temperature sensor | ||
(PT1000) | 0.1 (5%) | - |
Humidity sensor | ||
(SHTW2) | 0.1 (5%) | - |
Wind/Pressure sensor | 0.1 (5%) | - |
Power Subsystem | ||
PCDU | 16.7 (10%) | 2.9 (10%) |
Li-SOCl battery cell, | ||
LSH 20-150, 8s4p module | - | 4.2 (5%) |
Command and Data Handling | ||
OBC | ||
(LEON 3, ProASIC3) | 2.2 (10%) | 0.1 (10%) |
Communications | ||
S-band antenna module | ||
(NanoCom ANT2000) | 11.6 (5%) | 0.1 (10%) |
Balloon/deployment system | ||
Floating mass (gas + balloon) | - | 5 (10%) |
TOTAL (including margin) | 91.1 (109.3) W | 14.3 (17.6) kg |
Cell name | LS14250 | LS33600 | LSH20 | LSH20-150 | LO34SX | LO25SX | LO 29 SHX | LO 39 SHX | G 06/6 | G 62/1 |
Type | Li-SOCl | Li-SOCl | Li-SOCl | Li-SOCl | Li-SCl | Li-SCl | Li-SCl | Li-SCl | Li-SCl | Li-SCl |
Energy [Wh] | 4.3 | 61.2 | 46.8 | 50.4 | 2.8 | 22.4 | 10.5 | 32.2 | 2.7 | 95.2 |
Typical weight [g] | 8.9 | 90 | 100 | 104.5 | 16 | 96 | 40 | 125 | 15 | 300 |
Operating temp. [C] | −60/+85 | −60/+85 | −60/+85 | −40/+150 | −40/+70 | −60/+70 | −60/+70 | −60/+70 | −60/+70 | −60/+70 |
Energy density [Wh/kg] | 485.4 | 680.0 | 468.0 | 482.3 | 175.0 | 233.3 | 262.5 | 257.6 | 177.3 | 317.3 |
Cell name | LS14250 | LS33600 | LSH20 | LSH20-150 | LO34SX | LO25SX | LO 29 SHX | LO 39 SHX | G 06/6 | G 62/1 |
Type | Li-SOCl | Li-SOCl | Li-SOCl | Li-SOCl | Li-SCl | Li-SCl | Li-SCl | Li-SCl | Li-SCl | Li-SCl |
Series cells | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 |
Parallel cells | 38 | 3 | 4 | 4 | 47 | 6 | 13 | 5 | 50 | 2 |
Cells mass [kg] | 2.7 | 2.2 | 3.2 | 3.3 | 7.5 | 5.8 | 5.2 | 6.3 | 7.5 | 6 |
Total mass [kg] | 3.2 | 2.6 | 3.8 | 4.0 | 9.0 | 6.9 | 6.2 | 7.5 | 9 | 7.2 |
Cell name | MP 174565 XTD | MP 176065 XTD | VL 34570 xlr | MP 176065 xlr | VES16 |
Type | Li-ion | Li-ion | Li-ion | Li-ion | Li-ion |
Life cycles @100DoD, | |||||
C-C/2, 25C | 2700 | 2700 | 600 | 1800 | 5000 |
Energy [Wh] | 14.6 | 20.4 | 19.7 | 24.8 | 16 |
Typical weight [g] | 97 | 135 | 130 | 150 | 155 |
Discharging temp. [C] | −40/+ 85 | −40/+ 85 | −35/+60 | −35/+60 | +10/+40 |
Charging temp. [C] | −30/+ 85 | −30/+ 85 | −30/+60 | −30/+60 | +10/+40 |
Energy density [Wh/kg] | 150.5 | 151.4 | 151.6 | 165.5 | 103.2 |
Cell name | MP 174565 XTD | MP 176065 XTD | VL 34570 xlr | MP 176065 xlr | VES16 |
Type | Li-ion | Li-ion | Li-ion | Li-ion | Li-ion |
Series cells | 8 | 8 | 8 | 8 | 8 |
Parallel cells | 3 | 2 | 2 | 3 | 3 |
Cells mass [kg] | 2.3 | 2.2 | 2.1 | 2.4 | 3.7 |
Total mass [kg] | 2.8 | 2.6 | 2.5 | 2.9 | 4.5 |
Altitude (power per unit area) | 40 km (112.2 W/m) | 55 km (256 W/m) | 70 km (700 W/m) |
1 body mounted SA (16 cells = 0.048 m) Power [W] | 5.4 | 12.3 | 33.7 |
1 body mounted + 2 deployed SA = 48 cells = 0.145 m, Power [W] | 16.2 | 37.0 | 101.2 |
1 body mounted + 4 deployed SA = 80 cells = 0.241 m, Power [W] | 27.0 | 61.7 | 168.7 |
Subsystem | Non-Op Min [C] | Op Min [C] | Op Max [C] | Non-Op Max [C] | Heat Dissipation [W] |
---|---|---|---|---|---|
UV laser | n/a | −135 | 70 | n/a | 3.4 |
Spectrometer | −60 | −30 | 50 | 70 | 8.2 |
Telescope | −60 | −30 | 50 | 70 | 3.4 |
Camera | −40 | −30 | 60 | 85 | 1.0 |
BAT | n/a | −40 | 150 | n/a | 0.6 |
PCDU | −40 | −30 | 60 | 85 | 2.0–10.3 |
OBC | −55 | −30 | 85 | 125 | 0.4 |
COM e | n/a | −40 | 70 | n/a | 2.2 |
Altitude | Temperature | Pressure | Reynolds Number | Nusselt Number | Heat Exchange Coefficient | Max. Steady State Temp. (Science Payload Off) |
---|---|---|---|---|---|---|
70 km | −48 C | 10 mbar | 1.9 × 10–4.8 × 10 (laminar) | 43–68 | 2–4 W/(m K) | −45 … −43 C |
55 km | 40 C | 100 mbar | 1.4 × 10–3.4 × 10 (laminar) | 115–182 | 6–10 W/(m K) | 41 … 42 C |
1.4 × 10–3.4 × 10 (turbulent) | 356–741 | 20–41 W/(m K) | 40 … 41 C | |||
40 km | 127 C | 1000 mbar | 1.1 × 10–2.7 × 10 (turbulent) | 1509–4004 | 84–223 W/(m K) | 127 C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribes-Pleguezuelo, P.; Delacourt, B.; Holmberg, M.K.G.; Iorfida, E.; Reiss, P.; Salinas, G.; Suliga, A. Exploring the Habitability of Venus: Conceptual Design of a Small Atmospheric Probe. Aerospace 2021, 8, 173. https://doi.org/10.3390/aerospace8070173
Ribes-Pleguezuelo P, Delacourt B, Holmberg MKG, Iorfida E, Reiss P, Salinas G, Suliga A. Exploring the Habitability of Venus: Conceptual Design of a Small Atmospheric Probe. Aerospace. 2021; 8(7):173. https://doi.org/10.3390/aerospace8070173
Chicago/Turabian StyleRibes-Pleguezuelo, Pol, Bruno Delacourt, Mika K. G. Holmberg, Elisabetta Iorfida, Philipp Reiss, Guillermo Salinas, and Agnieszka Suliga. 2021. "Exploring the Habitability of Venus: Conceptual Design of a Small Atmospheric Probe" Aerospace 8, no. 7: 173. https://doi.org/10.3390/aerospace8070173
APA StyleRibes-Pleguezuelo, P., Delacourt, B., Holmberg, M. K. G., Iorfida, E., Reiss, P., Salinas, G., & Suliga, A. (2021). Exploring the Habitability of Venus: Conceptual Design of a Small Atmospheric Probe. Aerospace, 8(7), 173. https://doi.org/10.3390/aerospace8070173