Micro-Vortex Generators on Transonic Convex-Corner Flow
Abstract
:1. Introduction
2. Experimental Setup
2.1. Transonic Wind Tunnel
2.2. Test Model
2.3. Instrumentation and Data Acquisition System
3. Results and Discussion
3.1. Mean Surface Pressure Distributions
3.2. Surface Pressure Fluctuations
3.3. Surface Oil Flow Visualization
3.4. Self-Sustained Shock Oscillation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
fs | shock zero-crossing frequency |
h | height of vortex generator |
h* | normalized height of vortex generator, h/δ |
L | mean separation length |
L* | normalized mean separation length |
M | freestream Mach number |
Mpeak | peak Mach number |
Po | stagnation pressure |
Pw | local mean surface pressure |
Pw/Po | mean pressure coefficient |
St | Strouhal number, fsL/Up |
Up | peak velocity |
X | coordinate along the centerline of model surface |
X* | normalized streamwise distance, X/δ |
β | similarity parameter, |
δ | incoming boundary-layer thickness |
η | convex-corner angle, degree |
σp | standard deviation of surface pressure |
σp/Pw | fluctuating pressure coefficient |
References
- Szodruch, J.; Hilbig, R. Variable wing camber for transport aircraft. Prog. Aerosp. Sci. 1998, 25, 297–328. [Google Scholar] [CrossRef]
- Liu, X.; Squire, L.C. An investigation of shock/boundary layer interactions on curved surfaces at transonic speeds. J. Fluid Mech. 1998, 187, 467–486. [Google Scholar] [CrossRef]
- Chung, K.M. Unsteadiness of transonic convex-corner flows. Exp. Fluids 2004, 37, 917–922. [Google Scholar] [CrossRef]
- Chung, K.M.; Chang, P.H.; Chang, K.C. Flow similarity in compressible convex-corner flows. AIAA J. 2012, 50, 985–988. [Google Scholar] [CrossRef]
- Chung, K.M.; Lee, K.H.; Chang, P.H. Low-frequency shock motion in transonic convex-corner flows. AIAA J. 2017, 55, 2109–2112. [Google Scholar]
- Ferrero, A. Control of a supersonic inlet in off-design conditions with plasma actuators and bleed. Aerospace 2020, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.Z.; Miao, X.; Jaqadeesh, C. Experimental investigation of the transonic shock-wave/boundary-layer interaction over a shock-generation bump. Phys. Fluids 2020, 32, 106102. [Google Scholar] [CrossRef]
- Huang, W.; Wu, H.; Yang, Y.G.; Yan, L.; Li, S.B. Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows. Acta Astronaut. 2020, 174, 103–122. [Google Scholar] [CrossRef]
- Gaqeik, M.; Nies, J.; Klioutchnikov, I.; Oliver, H. Pressure wave damping in transonic airfoil flow by means of micro vortex generators. Aerosp. Sci. Technol. 2018, 81, 65–77. [Google Scholar] [CrossRef]
- Gao, W.Z.; Chen, J.; Liu, C.H.; Li, Z.F.; Yang, J.M.; Zeng, Y.S. Effects of vortex generators on unsteady unstarted flows of an axisymmetric inlet with nose bluntness. Aerosp. Sci. Technol. 2020, 104, 106021. [Google Scholar] [CrossRef]
- Chung, K.C.; Su, K.C.; Chang, K.C. The effect of vortex generators on shock-induced boundary layer separation in a transonic convex-corner flow. Aerospace 2021, 8, 157. [Google Scholar] [CrossRef]
- Baqheri, H.; Mirjalily, S.A.A.; Oloomi, S.A.A.; Salimpour, M.R. Effects of micro-vortex generators on shock wave structure in a low aspect ratio duct. numerical investigation. Acta Astronaut. 2020, 178, 616–624. [Google Scholar] [CrossRef]
- Baydar, E.; Lu, F.K.; Slater, J.W. Vortex generators in a two-dimensional external-compression supersonic inlet. J. Prop. Power 2018, 34, 521–538. [Google Scholar] [CrossRef]
- Lin, J.C. Review of research on low-profile vortex generators to control boundary-layer separation. Prog. Aerosp. Sci. 2002, 38, 389–420. [Google Scholar] [CrossRef]
- Lin, J.C.; Robinson, S.K.; Mcghee, R.J.; Valarezo, W.O. Separation control on high-lift airfoils via micro-vortex generators. J. Aircr. 1994, 31, 1317–1323. [Google Scholar] [CrossRef]
- Panaras, A.G.; Lu, F.K. Micro-vortex generators for shock wave/boundary layer interactions. Prog. Aerosp. Sci. 2015, 74, 16–47. [Google Scholar] [CrossRef]
- Titchener, N.; Babinsky, H. A review of the use of vortex generators for mitigating shock-induced separation. Shock Waves 2015, 25, 473–494. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.B.; Manisankar, C. Assessment of various low-profile mechanical vortex generators in controlling a shock-induced separation. AIAA J. 2017, 55, 2228–2240. [Google Scholar] [CrossRef]
- Jenkin, L.; Gorton, S.A.; Anders, S. Flow Control Device Evaluation for an Internal Flow with an Adverse Pressure Gradient; AIAA Paper 2002–0266; AIAA: Reno, NV, USA, 2002. [Google Scholar]
- Bur, R.; Coponet, D.; Carpels, Y. Separation control by vortex generator devices in a transonic channel flow. Shock Waves 2009, 19, 521–530. [Google Scholar] [CrossRef]
- Babinsky, H.; Li, Y.; Pitt Ford, C.W. Micro-ramp control of supersonic oblique shock-wave/boundary-layer interactions. AIAA J. 2009, 47, 668–675. [Google Scholar] [CrossRef]
- Lu, F.K. Visualization of supersonic flow around a sharp-edged, sub-boundary-layer protuberance. J. Visual. 2015, 18, 619–629. [Google Scholar] [CrossRef]
- Chung, K.M. Investigation on transonic convex-corner flows. J. Aircr. 2002, 39, 1014–1018. [Google Scholar] [CrossRef]
- Chung, K.M.; Miau, J.J. Calibration of ASTRC/NCKU 600 mm × 600 mm transonic wind tunnel. In Proceedings of the 33rd AIAA Aerospace Science Meeting and Exhibit, Reno, NV, USA, 9–12 January 1995. [Google Scholar]
- Bies, D.A. Flight and Wind Tunnel Measurements of Boundary Layer Pressure Fluctuations and Induced Structural Response; NASA-CR-626; Langley Research Center, National Aeronautics and Space Administration: Washington, DC, USA, 1966. [Google Scholar]
- Dolling, D.S.; Brusniak, L. Separation shock motion in fin, cylinder, and compression ramp induced turbulent interactions. AIAA J. 1989, 27, 734–742. [Google Scholar] [CrossRef]
- Holden, H.A.; Babinsky, H. Vortex generators near shock/boundary layer interactions. In Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2004. [Google Scholar]
- Bouhadji, A.; Braza, M. Organised modes and shock-vortex interaction in unsteady viscous transonic flows around an aerofoil Part I: Mach number effect. Comput. Fluids 2003, 32, 1233–1260. [Google Scholar] [CrossRef]
- Delery, J. Shock wave/turbulent boundary layer interaction and its control. Prog. Aerosp. Sci. 1985, 22, 209–280. [Google Scholar] [CrossRef]
- Lee, S.; Loth, E. Effect of Mach number on flow past microramps. AIAA J. 2011, 49, 97–110. [Google Scholar] [CrossRef]
- Lee, S.; Loth, E.; Babinsky, H. Normal shock boundary layer control with various vortex generator geometries. Comput. Fluids 2011, 49, 233–246. [Google Scholar] [CrossRef]
- Gonsalez, J.C.; Dolling, D.S. Correlation of interaction sweepback effects on the dynamics of shock-induced turbulent separation. In Proceedings of the 31st AIAA Aerosp Sci Meeting and Exhibit, Reno, NV, USA, 11–14 January 1993. [Google Scholar]
Parameters | Value |
---|---|
h/δ | 0.2 |
l/δ | 1.0 |
D/δ | 3.0 |
wv/δ | 0.2 |
wr/δ | 0.5 |
s/δ | 0.5 |
d/δ | 1.0 |
α | 15° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, K.-M.; Su, K.-C.; Chang, K.-C. Micro-Vortex Generators on Transonic Convex-Corner Flow. Aerospace 2021, 8, 268. https://doi.org/10.3390/aerospace8090268
Chung K-M, Su K-C, Chang K-C. Micro-Vortex Generators on Transonic Convex-Corner Flow. Aerospace. 2021; 8(9):268. https://doi.org/10.3390/aerospace8090268
Chicago/Turabian StyleChung, Kung-Ming, Kao-Chun Su, and Keh-Chin Chang. 2021. "Micro-Vortex Generators on Transonic Convex-Corner Flow" Aerospace 8, no. 9: 268. https://doi.org/10.3390/aerospace8090268
APA StyleChung, K. -M., Su, K. -C., & Chang, K. -C. (2021). Micro-Vortex Generators on Transonic Convex-Corner Flow. Aerospace, 8(9), 268. https://doi.org/10.3390/aerospace8090268