Jet Impingement Heat Transfer Characteristics with Variable Extended Jet Holes under Strong Crossflow Conditions
Abstract
:1. Introduction
2. Experimental Setup
2.1. Design of Impingement Cooling System
2.2. Test Facility
2.3. Measurement Method and Technique
2.4. Uncertainty Analysis
2.5. Comparison with Previous Data
3. Computational Methodology
3.1. Computation Domain and Boundary Conditions
3.2. Validation of the Computation Setup
4. Results and Discussion
4.1. Flow Characteristics
4.2. Heat Transfer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Cd | Discharge coefficient |
cs | Specific heat capacity of solid |
d | Diameter of jet hole |
Gc | Mass flow flux of crossflow |
Gj | Mass flow flux of jets |
h | Heat transfer coefficient |
k | Thermal conductivity |
L | Extended length of jet holes |
Mass flow rate | |
N | Total number of jet hole |
nmax | Maximum step of temperature change |
Nu | Nusselt number |
p | Pressure |
Q | Pumping power |
R | Gas constant |
Rej | Averaged jet Reynolds number |
Rej,l | Local jet Reynolds number |
T | Temperature |
t | Time |
xn | Streamwise jet-to-jet distance |
yn | Spanwise jet-to-jet distance |
zn | Jet-to-target distance |
x, y, z | The Cartesian coordinate |
Greeks | |
α | Thermal diffusivity |
κ | Specific heat ratio |
μ | Viscosity |
ρ | Density |
Subscripts | |
avg | Area-averaged |
ex | Outlet |
i | Initial value, index |
ideal | Ideal value |
in | Inlet |
real | Real value |
s | Solid, static |
t | Total |
w | Wall |
∞ | Air |
Overbars | |
– | Spanwise-averaged |
= | Row-averaged |
References
- Weigand, B.; Spring, S. Multiple Jet Impingement—A Review. Heat Transf. Res. 2011, 42, 101–142. [Google Scholar] [CrossRef]
- Ekkad, S.V.; Singh, P. A Modern Review on Jet Impingement Heat Transfer Methods. J. Heat Transf. 2021, 143, 064001. [Google Scholar] [CrossRef]
- Florschuetz, L.W.; Metzger, D.E.; Takeuchi, D.; Berry, R. Multiple Jet Impingement Heat Transfer Characteristic—Experimental Investigation of in-Line and Staggered Arrays with Crossflow; NASA-CR-3217; NASA: Washington, DC, USA, 1980. [Google Scholar]
- Cocchi, L.; Facchini, B.; Giuntini, S.; Winchler, L.; Tarchi, L.; Innocenti, L.; Andrei, L.; Bonini, A. Experimental Investigation on Impingement Array Cooling Systems through IR Thermography, Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Volume 5B: Heat Transfer, Seoul, Korea, 13–17 June 2016; ASME Paper No. GT2016-57436; ASME: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Xing, Y.; Spring, S.; Weigand, B. Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets. J. Heat Transf. 2010, 132, 092201. [Google Scholar] [CrossRef]
- Cho, H.H.; Rhee, D.H.; Goldstein, R.J. Effects of Hole Arrangements on Local Heat/Mass Transfer for Impingement/Effusion Cooling With Small Hole Spacing. J. Turbomach. 2008, 130, 041003. [Google Scholar] [CrossRef]
- Lee, J.; Ren, Z.; Haegele, J.; Potts, G.; Jin, J.S.; Ligrani, P.; Fox, M.D.; Moon, H.-K. Effects of Jet-To-Target Plate Distance and Reynolds Number on Jet Array Impingement Heat Transfer. J. Turbomach. 2013, 136, 051013. [Google Scholar] [CrossRef]
- Llucià, S.; Terzis, A.; Ott, P.; Cochet, M. Heat transfer characteristics of high crossflow impingement channels: Effect of number of holes. Proc. Inst. Mech. Eng. Part A J. Power Energy 2015, 229, 560–568. [Google Scholar] [CrossRef]
- Azad, G.S.; Huang, Y.; Han, J.-C. Impingement Heat Transfer on Dimpled Surfaces Using a Transient Liquid Crystal Technique. J. Thermophys. Heat Transf. 2000, 14, 186–193. [Google Scholar] [CrossRef]
- Xing, Y.; Weigand, B. Experimental investigation of impingement heat transfer on a flat and dimpled plate with different crossflow schemes. Int. J. Heat Mass Transf. 2010, 53, 3874–3886. [Google Scholar] [CrossRef]
- Lee, J.; Ren, Z.; Ligrani, P.; Fox, M.D.; Moon, H.K. Crossflows from jet array impingement cooling: Effects of hole array spacing, jet-to-target plate distance, and Reynolds number. Int. J. Therm. Sci. 2015, 88, 7–18. [Google Scholar] [CrossRef]
- Schulz, S.; Schueren, S.; von Wolfersdorf, J. A particle image velocimetry-based investigation of the flow field in an oblique jet impingement configuration. J. Turbomach. 2014, 136, 051009. [Google Scholar] [CrossRef]
- Schueren, S.; Hoefler, F.; Von Wolfersdorf, J.; Naik, S. Heat Transfer in an Oblique Jet Impingement Configuration With Varying Jet Geometries. J. Turbomach. 2013, 135, 021010. [Google Scholar] [CrossRef]
- El-Gabry, L.A.; Kaminski, D.A. Experimental Investigation of Local Heat Transfer Distribution on Smooth and Roughened Surfaces Under an Array of Angled Impinging Jets. J. Turbomach. 2005, 127, 532–544. [Google Scholar] [CrossRef]
- Li, W.; Xu, M.; Ren, J.; Jiang, H. Experimental Investigation of Local and Average Heat Transfer Coefficients Under an Inline Impinging Jet Array, Including Jets With Low Impingement Distance and Inclined Angle. J. Heat Transf. 2017, 139, 012201. [Google Scholar] [CrossRef]
- Gao, L.; Ekkad, S.V.; Bunker, R.S. Impingement Heat Transfer Part I: Linearly Stretched Arrays of Holes. J. Thermophys. Heat Transf. 2005, 19, 57–65. [Google Scholar] [CrossRef]
- Florschuetz, L.W.; Metzger, D.E.; Su, C.C. Heat transfer characteristics for jet array impingement with initial crossflow. ASME J. Heat Transf. 1984, 106, 34–41. [Google Scholar] [CrossRef]
- Kercher, D.M.; Tabakoff, W. Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air. J. Eng. Power 1970, 92, 73–82. [Google Scholar] [CrossRef]
- Correia, V.H.S. Impingement Cooling Apparatus for Turbine Shrouds Having Ducts of Increasing Cross-Sectional Area in the Direction of Post-Impingement Cooling Flow. U.S. Patent 5,480,281, 2 January 1996. [Google Scholar]
- Esposito, E.I.; Ekkad, S.V.; Kim, Y.; Dutta, P. Novel Jet Impingement Cooling Geometry for Combustor Liner Backside Cooling. J. Therm. Sci. Eng. Appl. 2009, 1, 021001. [Google Scholar] [CrossRef]
- Chi, Z.; Kan, R.; Ren, J.; Jiang, H. Experimental and numerical study of the anti-crossflows impingement cooling structure. Int. J. Heat Mass Transf. 2013, 64, 567–580. [Google Scholar] [CrossRef]
- Kim, T.; Jung, E.Y.; Bang, M.; Lee, C.; Moon, H.K.; Cho, H.H. Heat Transfer Measurements for Array Jet Impingement With Castellated Wall. J. Turbomach. 2022, 144, 031009. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Sundén, B. A novel control of jet impingement heat transfer in cross-flow by a vortex generator pair. Int. J. Heat Mass Transf. 2015, 88, 82–90. [Google Scholar] [CrossRef]
- Wang, C.; Luo, L.; Wang, L.; Sundén, B. Effects of vortex generators on the jet impingement heat transfer at different cross-flow Reynolds numbers. Int. J. Heat Mass Transf. 2016, 96, 278–286. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Q. A Novel Multi-Stage Impingement Cooling Scheme—Part I: Concept Study. J. Turbomach. 2020, 142, 121008. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Q. A novel multi-stage impingement cooling scheme—Part ii: Design optimization. J. Turbomach. 2020, 142, 121009. [Google Scholar] [CrossRef]
- Tepe, A.Ü.; Yetişken, Y.; Uysal, Ü.; Arslan, K. Experimental and numerical investigation of jet impingement cooling using extended jet holes. Int. J. Heat Mass Transf. 2020, 158, 119945. [Google Scholar] [CrossRef]
- Tepe, A.Ü.; Arslan, K.; Yetisken, Y.; Uysal, U. Effects of Extended Jet Holes to Heat Transfer and Flow Characteristics of the Jet Impingement Cooling. J. Heat Transf. 2019, 141, 082202. [Google Scholar] [CrossRef]
- Esposito, E.I.; Ekkad, S.V.; Kim, Y.; Dutta, P. Comparing Extended Port and Corrugated Wall Jet Impingement Geometry for Combustor Liner Backside Cooling, Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air, Volume 4: Turbo Expo 2007, Parts A and B, Montreal, Canada, 14–17 May 2007; ASME Paper No. GT2007-27390; ASME: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Madhavan, S.; Ramakrishnan, K.R.; Singh, P.; Ekkad, S.V. Jet Impingement Heat Transfer Enhancement by U-Shaped Crossflow Diverters. J. Therm. Sci. Eng. Appl. 2020, 12, 041005. [Google Scholar] [CrossRef]
- Han, J.-C.; Wright, L.M. Experimental Methods in Heat Transfer and Fluid Mechanics; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Singh, P.; Pandit, J.; Ekkad, S.V. Characterization of heat transfer enhancement and frictional losses in a two-pass square duct featuring unique combinations of rib turbulators and cylindrical dimples. Int. J. Heat Mass Transf. 2017, 106, 629–647. [Google Scholar] [CrossRef]
- Bergman, T.L.; Incropera, F.P.; DeWitt, D.P.; Lavine, A.S. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Moffat, R.J. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1988, 1, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Florschuetz, L.W.; Metzger, D.E.; Truman, C.R. Jet Array Impingement with Crossflow—Correlation of Streamwise Resolved Flow and Heat Transfer Distributions; NASA-CR-3373; NASA: Washington, DC, USA, 1981. [Google Scholar]
- Yang, X.; Liu, Z.; Zhao, Q.; Liu, Z.; Feng, Z.; Guo, F.; Ding, L.; Simon, T.W. Experimental and numerical investigations of overall cooling effectiveness on a vane endwall with jet impingement and film cooling. Appl. Therm. Eng. 2019, 148, 1148–1163. [Google Scholar] [CrossRef]
- Zuckerman, N.; Lior, N. Impingement Heat Transfer: Correlations and Numerical Modeling. J. Heat Transf. 2005, 127, 544–552. [Google Scholar] [CrossRef] [Green Version]
- Ricklick, M.A. Characterization of an Inline Row Impingement Channel for Turbine Blade Cooling Applications. Ph.D. Thesis, University of Central Florida, Orlando, FL, USA, 2009. [Google Scholar]
Parameter | Typical Value | Measurement Error |
---|---|---|
7.077–21.231 g/s | ±1.0% F.S. | |
T | 23–67.5 °C | ±0.5 °C |
p | 101.347–147.236 kPa | ±0.05% |
t | 0–150 s | ±0.067 s |
Nu | 11.58–173.75 | ±3.97–±11.20% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Wu, H.; Feng, Z. Jet Impingement Heat Transfer Characteristics with Variable Extended Jet Holes under Strong Crossflow Conditions. Aerospace 2022, 9, 44. https://doi.org/10.3390/aerospace9010044
Yang X, Wu H, Feng Z. Jet Impingement Heat Transfer Characteristics with Variable Extended Jet Holes under Strong Crossflow Conditions. Aerospace. 2022; 9(1):44. https://doi.org/10.3390/aerospace9010044
Chicago/Turabian StyleYang, Xing, Hang Wu, and Zhenping Feng. 2022. "Jet Impingement Heat Transfer Characteristics with Variable Extended Jet Holes under Strong Crossflow Conditions" Aerospace 9, no. 1: 44. https://doi.org/10.3390/aerospace9010044
APA StyleYang, X., Wu, H., & Feng, Z. (2022). Jet Impingement Heat Transfer Characteristics with Variable Extended Jet Holes under Strong Crossflow Conditions. Aerospace, 9(1), 44. https://doi.org/10.3390/aerospace9010044