A Review on Solid-State-Based Additive Friction Stir Deposition
Abstract
:1. Introduction
2. Additive Friction Stir Deposition (AFSD)
2.1. Equipment and Tool
2.2. The Mechanism of AFSD
2.3. The Effect of Process Parameters on Deposition Quality
2.3.1. Surface Quality
2.3.2. Microstructure
2.3.3. Mechanical Properties
2.3.4. Post-Deposition Heat Treatment
3. Simulation
4. Engineering Application
5. Perspective
5.1. The Characterization Method and Unified Constitutive Model under Severe Transient Thermo-Mechanical Conditions
5.2. The Post-Deposition Heat Treatment
5.3. The Composite Manufacturing of Additive and Reduced Process
5.4. A Systematic Study on the AFSD Process
6. Conclusions
- The primary mechanism of AFSD is mainly related to temperature and plastic deformation. Different high-temperature deformation behaviors lead to different heat generation mechanisms and deformation mechanisms for different materials.
- Due to high temperature and large plastic deformation, dynamic recrystallization is a common characteristic of different deposition materials. Meanwhile, it is accompanied by grain growth, phase transition, precipitate evolution, etc. The above characters may reduce or improve the mechanical properties. Due to complex microstructure evolution, the corresponding characterization method and unified constitutive model under severe transient thermo-mechanical conditions need further study.
- Post-deposition heat treatment is a valid method to improve material performance, including strength and performance uniformity, especially for materials with degraded performance after deposition. The corresponding heat treatment system needs further study.
- The AFSD process can be used in different situations, including producing large parts, surface coating, repairing large parts, etc. However, AFSD has the limitation of low manufacturing accuracy and low flexibility. Therefore, the composite manufacturing of additive and reduced processes is a trend to produce high-accuracy parts.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Sames, W.J.; List, F.; Pannala, S.; Dehoff, R.R.; Babu, S.S. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 2016, 61, 315–360. [Google Scholar] [CrossRef]
- Agrawal, P.; Thapliyal, S.; Nene, S.; Mishra, R.; McWilliams, B.; Cho, K. Excellent strength-ductility synergy in metastable high entropy alloy by laser powder bed additive manufacturing. Addit. Manuf. 2020, 32, 101098. [Google Scholar] [CrossRef]
- Liu, S.; Bor, T.; Van der Stelt, A.; Geijselaers, H.; Kwakernaak, C.; Kooijman, A.; Mol, J.; Akkerman, R.; Van Den Boogaard, A. Friction surface cladding: An exploratory study of a new solid state cladding process. J. Mater. Process. Technol. 2016, 229, 769–784. [Google Scholar] [CrossRef]
- Van Der Stelt, A.; Bor, T.C.; Geijselaers, H.J.; Akkerman, R.; van den Boogaard, A.H. Cladding of advanced Al alloys employing friction stir welding. Key Eng. Mater. 2013, 554, 1014–1021. [Google Scholar]
- Perry, M.E.; Griffiths, R.J.; Garcia, D.; Sietins, J.M.; Zhu, Y.; Hang, Z.Y. Morphological and microstructural investigation of the non-planar interface formed in solid-state metal additive manufacturing by additive friction stir deposition. Addit. Manuf. 2020, 35, 101293. [Google Scholar] [CrossRef]
- Mason, C.; Rodriguez, R.I.; Avery, D.Z.; Phillips, B.J.; Bernarding, B.P.; Williams, M.; Cobbs, S.D.; Jordon, J.B.; Allison, P. Process-structure-property relations for as-deposited solid-state additively manufactured high-strength aluminum alloy. Addit. Manuf. 2021, 40, 101879. [Google Scholar] [CrossRef]
- Calvert, J.R. Microstructure and Mechanical Properties of WE43 Alloy Produced via Additive Friction Stir Technology. Master’s Thesis, Virginia Tech, Blacksburg, VA, USA, 2015. [Google Scholar]
- Jha, K.K.; Kesharwani, R.; Imam, M. Microstructural and micro-hardness study on the fabricated Al 5083-O/6061-T6/7075-T6 gradient composite component via a novel route of friction stir additive manufacturing. Mater. Today Proc. 2022, 56, 819–825. [Google Scholar]
- Griffiths, R.J.; Perry, M.E.; Sietins, J.M.; Zhu, Y.; Hardwick, N.; Cox, C.D.; Rauch, H.A.; Yu, H.Z. A perspective on solid-state additive manufacturing of aluminum matrix composites using MELD. J. Mater. Eng. Perform. 2019, 28, 648–656. [Google Scholar] [CrossRef]
- Jordon, J.; Allison, P.; Phillips, B.; Avery, D.; Kinser, R.; Brewer, L.; Cox, C.; Doherty, K. Direct recycling of machine chips through a novel solid-state additive manufacturing process. Mater. Des. 2020, 193, 108850. [Google Scholar] [CrossRef]
- Griffiths, R.J.; Petersen, D.T.; Garcia, D.; Yu, H.Z. Additive friction stir-enabled solid-state additive manufacturing for the repair of 7075 aluminum alloy. Appl. Sci. 2019, 9, 3486. [Google Scholar] [CrossRef]
- Martin, L.P.; Luccitti, A.; Walluk, M. Evaluation of Additive Friction Stir Deposition of AISI 316L For Repairing Surface Material Loss in AISI 4340. 2022. Available online: https://assets.researchsquare.com/files/rs-1214920/v1/1949905c-1540-44c7-bd10-47b5598123a2.pdf?c=1641484869 (accessed on 20 July 2022).
- Khodabakhshi, F.; Gerlich, A. Potentials and strategies of solid-state additive friction-stir manufacturing technology: A critical review. J. Manuf. Process. 2018, 36, 77–92. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Kumar, N.; Dixit, A.R. Friction stir additive manufacturing–An innovative tool to enhance mechanical and microstructural properties. Mater. Sci. Eng. B 2021, 263, 114832. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Dixit, V.; Rai, A.K.; Sharma, S.; Sharma, A.; Srivastava, V.S. Study of microstructural and mechanical properties of the component produced by friction stir additive manufacturing (FSAM)-A review. Mater. Today Proc. 2021, 47, 4142–4147. [Google Scholar] [CrossRef]
- Srivastava, M.; Rathee, S.; Maheshwari, S.; Noor Siddiquee, A.; Kundra, T. A review on recent progress in solid state friction based metal additive manufacturing: Friction stir additive techniques. Crit. Rev. Solid State Mater. Sci. 2019, 44, 345–377. [Google Scholar] [CrossRef]
- Available online: https://www.mouldu.com/uploadfile/2019/0618/20190618112127861.png (accessed on 20 July 2022).
- Elfishawy, E.; Ahmed, M.; El-Sayed Seleman, M. Additive manufacturing of aluminum using friction stir deposition. In TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2020; pp. 227–238. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Saha, P. Mechanical and microstructural characterization of aluminium powder deposit made by friction stir based additive manufacturing. J. Mater. Process. Technol. 2020, 281, 116648. [Google Scholar] [CrossRef]
- Karthik, G.; Ram, G.J.; Kottada, R.S. Friction deposition of titanium particle reinforced aluminum matrix composites. Mater. Sci. Eng. A 2016, 653, 71–83. [Google Scholar] [CrossRef]
- Chaudhary, B.; Jain, N.K.; Murugesan, J.; Patel, V. Exploring temperature-controlled friction stir powder additive manufacturing process for multi-layer deposition of aluminum alloys. J. Mater. Res. Technol. 2022, 20, 260–268. [Google Scholar] [CrossRef]
- El-Sayed Seleman, M.M.; Ataya, S.; Ahmed, M.M.; Hassan, A.M.; Latief, F.H.; Hajlaoui, K.; El-Nikhaily, A.E.; Habba, M.I. The Additive Manufacturing of Aluminum Matrix Nano Al2O3 Composites Produced via Friction Stir Deposition Using Different Initial Material Conditions. Materials 2022, 15, 2926. [Google Scholar] [CrossRef]
- Chaudhary, B.; Jain, N.K.; Murugesan, J. Development of friction stir powder deposition process for repairing of aerospace-grade aluminum alloys. CIRP J. Manuf. Sci. Technol. 2022, 38, 252–267. [Google Scholar] [CrossRef]
- Gopan, V.; Wins, K.L.D.; Surendran, A. Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes: A review. CIRP J. Manuf. Sci. Technol. 2021, 32, 228–248. [Google Scholar] [CrossRef]
- Derazkola, H.A.; Khodabakhshi, F.; Gerlich, A. Fabrication of a nanostructured high strength steel tube by friction-forging tubular additive manufacturing (FFTAM) technology. J. Manuf. Process. 2020, 58, 724–735. [Google Scholar] [CrossRef]
- Garcia, D.; Hartley, W.D.; Rauch, H.A.; Griffiths, R.J.; Wang, R.; Kong, Z.J.; Zhu, Y.; Hang, Z.Y. In situ investigation into temperature evolution and heat generation during additive friction stir deposition: A comparative study of Cu and Al-Mg-Si. Addit. Manuf. 2020, 34, 101386. [Google Scholar] [CrossRef]
- Joshi, S.S.; Sharma, S.; Radhakrishnan, M.; Pantawane, M.V.; Patil, S.M.; Jin, Y.; Yang, T.; Riley, D.A.; Banerjee, R.; Dahotre, N.B. A multi modal approach to microstructure evolution and mechanical response of additive friction stir deposited AZ31B Mg alloy. Sci. Rep. 2022, 12, 13234. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.S.; Ma, Z. Friction stir welding and processing. Mater. Sci. Eng. R Rep. 2005, 50, 1–78. [Google Scholar] [CrossRef]
- Perry, M.E.; Rauch, H.A.; Griffiths, R.J.; Garcia, D.; Sietins, J.M.; Zhu, Y.; Zhu, Y.; Hang, Z.Y. Tracing plastic deformation path and concurrent grain refinement during additive friction stir deposition. Materialia 2021, 18, 101159. [Google Scholar] [CrossRef]
- McNelley, T.; Swaminathan, S.; Su, J. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr. Mater. 2008, 58, 349–354. [Google Scholar] [CrossRef]
- Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J.J. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 2014, 60, 130–207. [Google Scholar] [CrossRef]
- Hartley, W.D.; Garcia, D.; Yoder, J.K.; Poczatek, E.; Forsmark, J.H.; Luckey, S.G.; Dillard, D.A.; Hang, Z.Y. Solid-state cladding on thin automotive sheet metals enabled by additive friction stir deposition. J. Mater. Process. Technol. 2021, 291, 117045. [Google Scholar] [CrossRef]
- Beck, S.; Rutherford, B.; Avery, D.; Phillips, B.; Rao, H.; Rekha, M.; Brewer, L.; Allison, P.; Jordon, J. The effect of solutionizing and artificial aging on the microstructure and mechanical properties in solid-state additive manufacturing of precipitation hardened Al–Mg–Si alloy. Mater. Sci. Eng. A 2021, 819, 141351. [Google Scholar] [CrossRef]
- Joshi, S.S.; Patil, S.M.; Mazumder, S.; Sharma, S.; Riley, D.A.; Dowden, S.; Banerjee, R.; Dahotre, N.B. Additive friction stir deposition of AZ31B magnesium alloy. J. Magnes. Alloys 2022. [Google Scholar] [CrossRef]
- Martin, L.P.; Luccitti, A.; Walluk, M. Repair of aluminum 6061 plate by additive friction stir deposition. Int. J. Adv. Manuf. Technol. 2022, 118, 759–773. [Google Scholar] [CrossRef]
- Babaniaris, S.; Jiang, L.; Varma, R.K.; Farabi, E.; Dorin, T.; Barnett, M.; Fabijanic, D. Solid-State Recycling of AA6063 Swarf Using Additive Friction Stir Deposition. Available online: https://ssrn.com/abstract=4156727 (accessed on 20 July 2022).
- Rivera, O.; Allison, P.; Jordon, J.; Rodriguez, O.; Brewer, L.; McClelland, Z.; Whittington, W.; Francis, D.; Su, J.; Martens, R. Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing. Mater. Sci. Eng. A 2017, 694, 1–9. [Google Scholar] [CrossRef]
- Priedeman, J.L.; Phillips, B.J.; Lopez, J.J.; Tucker Roper, B.E.; Hornbuckle, B.C.; Darling, K.A.; Jordon, J.B.; Allison, P.G.; Thompson, G.B. Microstructure development in additive friction stir-deposited Cu. Metals 2020, 10, 1538. [Google Scholar] [CrossRef]
- Agrawal, P.; Haridas, R.S.; Yadav, S.; Thapliyal, S.; Gaddam, S.; Verma, R.; Mishra, R.S. Processing-structure-property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips. Addit. Manuf. 2021, 47, 102259. [Google Scholar] [CrossRef]
- Polar, A.; Indacochea, J. Microstructural assessment of copper friction stir welds. J. Manuf. Sci. Eng. 2009, 131, 031012. [Google Scholar] [CrossRef]
- Phillips, B.; Avery, D.; Liu, T.; Rodriguez, O.; Mason, C.; Jordon, J.; Brewer, L.; Allison, P. Microstructure-deformation relationship of additive friction stir-deposition Al–Mg–Si. Materialia 2019, 7, 100387. [Google Scholar] [CrossRef]
- Farabi, E.; Babaniaris, S.; Barnett, M.R.; Fabijanic, D.M. Microstructure and mechanical properties of Ti6Al4V alloys fabricated by additive friction stir deposition. Addit. Manuf. Lett. 2022, 2, 100034. [Google Scholar] [CrossRef]
- Rivera, O.; Allison, P.; Brewer, L.; Rodriguez, O.; Jordon, J.; Liu, T.; Whittington, W.; Martens, R.; McClelland, Z.; Mason, C. Influence of texture and grain refinement on the mechanical behavior of AA2219 fabricated by high shear solid state material deposition. Mater. Sci. Eng. A 2018, 724, 547–558. [Google Scholar] [CrossRef]
- Simar, A.; Bréchet, Y.; De Meester, B.; Denquin, A.; Gallais, C.; Pardoen, T. Integrated modeling of friction stir welding of 6xxx series Al alloys: Process, microstructure and properties. Prog. Mater. Sci. 2012, 57, 95–183. [Google Scholar] [CrossRef]
- Trueba Jr, L.; Heredia, G.; Rybicki, D.; Johannes, L.B. Effect of tool shoulder features on defects and tensile properties of friction stir welded aluminum 6061-T6. J. Mater. Process. Technol. 2015, 219, 271–277. [Google Scholar] [CrossRef]
- Avery, D.; Phillips, B.; Mason, C.; Palermo, M.; Williams, M.; Cleek, C.; Rodriguez, O.; Allison, P.; Jordon, J. Influence of grain refinement and microstructure on fatigue behavior for solid-state additively manufactured Al-Zn-Mg-Cu alloy. Metall. Mater. Trans. A 2020, 51, 2778–2795. [Google Scholar] [CrossRef]
- Phillips, B.; Mason, C.; Beck, S.; Avery, D.; Doherty, K.; Allison, P.; Jordon, J. Effect of parallel deposition path and interface material flow on resulting microstructure and tensile behavior of Al-Mg-Si alloy fabricated by additive friction stir deposition. J. Mater. Process. Technol. 2021, 295, 117169. [Google Scholar] [CrossRef]
- Robinson, T.W.; Williams, M.; Rao, H.; Kinser, R.P.; Allison, P.; Jordon, J. Microstructural and Mechanical Properties of a Solid-State Additive Manufactured Magnesium Alloy. J. Manuf. Sci. Eng. 2022, 144, 061013. [Google Scholar] [CrossRef]
- Williams, M.; Robinson, T.; Williamson, C.; Kinser, R.; Ashmore, N.; Allison, P.; Jordon, J. Elucidating the effect of additive friction stir deposition on the resulting microstructure and mechanical properties of magnesium alloy we43. Metals 2021, 11, 1739. [Google Scholar] [CrossRef]
- Anderson-Wedge, K.; Avery, D.; Daniewicz, S.; Sowards, J.; Allison, P.; Jordon, J.; Amaro, R. Characterization of the fatigue behavior of additive friction stir-deposition AA2219. Int. J. Fatigue 2021, 142, 105951. [Google Scholar] [CrossRef]
- Song, K.H.; Nakata, K. Mechanical properties of friction-stir-welded Inconel 625 alloy. Mater. Trans. 2009, 50, 0909070891. [Google Scholar] [CrossRef]
- Ye, F.; Fujii, H.; Tsumura, T.; Nakata, K. Friction stir welding of Inconel alloy 600. J. Mater. Sci. 2006, 41, 5376–5379. [Google Scholar] [CrossRef]
- Avery, D.; Rivera, O.; Mason, C.; Phillips, B.; Jordon, J.; Su, J.; Hardwick, N.; Allison, P. Fatigue behavior of solid-state additive manufactured inconel 625. JOM 2018, 70, 2475–2484. [Google Scholar] [CrossRef]
- Tan, Z.; Li, J.; Zhang, Z. Experimental and numerical studies on fabrication of nanoparticle reinforced aluminum matrix composites by friction stir additive manufacturing. J. Mater. Res. Technol. 2021, 12, 1898–1912. [Google Scholar] [CrossRef]
- Avery, D.Z.; Cleek, C.; Phillips, B.J.; Rekha, M.; Kinser, R.P.; Rao, H.; Brewer, L.; Allison, P.; Jordon, J. Evaluation of Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Alloy Repaired via Additive Friction Stir Deposition. J. Eng. Mater. Technol. 2022, 144, 031003. [Google Scholar] [CrossRef]
- Rohatgi, N. Analysis of Friction Stir Additive Manufacturing and Friction Stir Welding of al6061-t6 via Numerical Modeling and Experiments. Master’s Thesis, Purdue University, West Lafayette, IN, USA, 2020. [Google Scholar]
- Stubblefield, G.; Fraser, K.; Phillips, B.; Jordon, J.; Allison, P. A meshfree computational framework for the numerical simulation of the solid-state additive manufacturing process, additive friction stir-deposition (AFS-D). Mater. Des. 2021, 202, 109514. [Google Scholar] [CrossRef]
- Yang, H. Numerical Simulation of the Temperature and Stress State on the Additive Friction Stir with the Smoothed Particle Hydrodynamics Method. Strength Mater. 2020, 52, 24–31. [Google Scholar] [CrossRef]
- Stubblefield, G.G. Smoothed Particle Hydrodynamic Modeling of Solid State Additively Manufactured Aluminum Alloys. Ph.D. Thesis, The University of Alabama, Tuscaloosa, AL, USA, 2021. [Google Scholar]
- Lauvray, A.; Poulhaon, F.; Michaud, P.; Joyot, P.; Duc, E. Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase. In Proceedings of the Innovative Manufacturing Systems and Processes, Prague, Czechia, 6–7 September 2021. [Google Scholar]
- Meld Manufacturing. Available online: http://meldmanufacturing.com (accessed on 20 July 2022).
- Zuo, Y.-Y.; Liu, H.; Gong, P.; Ji, S.-D.; Wu, B.-S. Radial additive friction stir repairing of mechanical hole out of dimension tolerance of AZ31 magnesium alloy assisted by stationary shoulder: Process and mechanical properties. Acta Metall. Sin. 2021, 34, 1345–1360. [Google Scholar] [CrossRef]
- Peter Martin, L.; Luccitti, A.; Walluk, M. Evaluation of Additive Friction Stir Deposition for the Repair of Cast Al-1.4 Si-1.1 Cu-1.5 Mg-2.1 Zn. J. Manuf. Sci. Eng. 2022, 144, 061006. [Google Scholar] [CrossRef]
- Gandra, J.; Vigarinho, P.; Pereira, D.; Miranda, R.; Velhinho, A.; Vilaça, P. Wear characterization of functionally graded Al–SiC composite coatings produced by friction surfacing. Mater. Des. (1980–2015) 2013, 52, 373–383. [Google Scholar] [CrossRef]
- Use Meld to Coat. Available online: http://meldmanufacturing.com/coat/ (accessed on 20 July 2022).
Machine | Feedstock | Typical Power | Overall Dimension | Advantages |
---|---|---|---|---|
MELD-K2 | bar | 10–20 A | 6.3 × 4.66 × 4.42 m3 | Produce and repair large parts, extreme material flexibility, and low power consumption |
MELD-B8 | bar | 10–20 A | 3 × 3.35 × 3.35 m3 | Extreme material flexibility, high material utilization |
MELD-L3 | bar | 10–20 A | 3 × 2.44 × 3.96 m3 | Large workspace, increasing production capability |
MELD-CD14 | bar | 10–20 A | 0.8 × 0.74 × 2.13 m3 | Integrate the MELD deposition hardware and control system onto an existing machine platform |
Substrate/Deposited Material | Feedstock | Tool | Rotational Speed (rpm) | Feeding Velocity (mm/s) | Travel Velocity (mm/s) | Deposition Thickness Per Layer (mm) | Ref. |
---|---|---|---|---|---|---|---|
6022-T4/6061-T6 | Bar | F | 300~900 | 0.85 | 2.54 | 0.9 | [33] |
6022-T4/6061-T6 | Bar | P | 300~900 | 1.27 | 2.54 | 2.1 | [33] |
6061-T6/6061-T651 | Bar | P | 300 | 1.1 | 2.12 | 1 | [34] |
AZ31B/AZ31B | Bar | F | 400 | 2.1~3.2 | 4.2~6.3 | 1 | [35] |
6061/6061 | Bar | P | 300 | Initial: 0.06 Steady: 0.85 | 2.54 | 1 | [30] |
6061 (P)/6061-T4 | Powder | Groove | 1200 | 460mm3/min | 0.42 | 0.5 | [22] |
6061-T6/6061-T651 | Bar | P | 325 | 2.1~3.4 | 1.3 | 0.5 | [36] |
6063 | Bar | P | 300 | 2.5 | 4.2 | 1 | [37] |
AZ31B-H24/ AZ31B | Bar | F | 400 | 2.1~3.2 | 4.2~6.3 | 1 | [28] |
IN625/HY80 | Bar | 0.5 | [38] | ||||
110Cu/110Cu | Bar | 275 | 2.12 | 1 | [39] | ||
Ti6Al4V/ Ti6Al4V | Chip | F | 400~500 | 1.12~1.49 | 2.54~3.38 | 0.5 | [40] |
Material | Al | Steel | Ti | Ni |
---|---|---|---|---|
Deposition rate (kg/h) | 13.6 | 4.9 | 2.5 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Li, X.; Xu, K.; Zang, Z.; Liu, X.; Zhang, Z.; Xiao, W.; Li, Y. A Review on Solid-State-Based Additive Friction Stir Deposition. Aerospace 2022, 9, 565. https://doi.org/10.3390/aerospace9100565
Dong H, Li X, Xu K, Zang Z, Liu X, Zhang Z, Xiao W, Li Y. A Review on Solid-State-Based Additive Friction Stir Deposition. Aerospace. 2022; 9(10):565. https://doi.org/10.3390/aerospace9100565
Chicago/Turabian StyleDong, Hongrui, Xiaoqiang Li, Ke Xu, Zhenyu Zang, Xin Liu, Zongjiang Zhang, Wenlong Xiao, and Yong Li. 2022. "A Review on Solid-State-Based Additive Friction Stir Deposition" Aerospace 9, no. 10: 565. https://doi.org/10.3390/aerospace9100565
APA StyleDong, H., Li, X., Xu, K., Zang, Z., Liu, X., Zhang, Z., Xiao, W., & Li, Y. (2022). A Review on Solid-State-Based Additive Friction Stir Deposition. Aerospace, 9(10), 565. https://doi.org/10.3390/aerospace9100565