Closed-Form Analysis of Thin-Walled Composite Beams Using Mixed Variational Approach
Abstract
:1. Introduction
2. Theory
2.1. Strain-Displacement Relations
2.2. Laminate Constitutive Relations
2.3. Governing Equations
2.4. Recovery Relations
3. Numerical Examples
3.1. Anisotropic Rectangular Strip Beam
3.2. Four-Layered Laminated Composite Beam
3.3. Single-Cell Composite Box Beam with CAS Layup
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Radius of curvature for the shell wall | |
Normal force acting on the cross-section along x axis | |
Fy, Fz | Transverse shear forces acting on the cross-section |
Shear correction coefficient | |
Beam torsional moment | |
Mxx, Mss, Mxs | Shell moment resultants |
My, Mz | Beam bending moments about y, z axes |
Beam torsional bi-moment | |
Nxx, Nss, Nxs | Shell force resultants |
Nxn, Nsn | Transverse shear resultants for the shell |
ux, us, un | Shell displacements |
U, V, W | Beam displacements |
Shell membrane strain measures in x, s coordinates | |
Cross-sectional rotations of the beam | |
Shell curvature measures in x, s coordinates | |
Transverse shear strain measures over the shell wall | |
Sectional warping functions in x, y, z coordinates | |
Torsion-related out-of-plane warping function | |
Shell rotation angles about x, s axes | |
Transpose of an array | |
Partial differentiation with s coordinate | |
Partial differentiation with x coordinate |
Appendix A
References
- Hodges, D.H. Review of composite rotor blade modeling. AIAA J. 1990, 28, 561–565. [Google Scholar] [CrossRef]
- Jung, S.N.; Nagaraj, V.T.; Chopra, I. Assessment of composite rotor blade modeling techniques. J. Am. Helicopter Soc. 1999, 44, 188–205. [Google Scholar] [CrossRef]
- Hodges, D.H. Nonlinear Composite Beam Theory; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2006. [Google Scholar]
- Berdichevskii, V.L. On the energy of an elastic rod. J. Appl. Math. Mech. 1982, 45, 518–529. [Google Scholar] [CrossRef]
- Giavotto, V.; Borri, M.; Mantegazza, P.; Ghiringhelli, G.; Carmaschi, V.; Maffioli, G.; Mussi, F. Anisotropic beam theory and applications. Comput. Struct. 1983, 16, 403–413. [Google Scholar] [CrossRef]
- Morandini, M.; Chierichetti, M.; Mantegazza, P. Characteristic behavior of prismatic anisotropic beam via generalized eigenvectors. Int. J. Solids Struct. 2010, 47, 1327–1337. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Hodges, D.H.; Ho, J.C. Variational asymptotic beam sectional analysis—An updated version. Int. J. Eng. Sci. 2012, 59, 40–64. [Google Scholar] [CrossRef]
- Han, S.; Bauchau, O.A. Nonlinear three-dimensional beam theory for flexible multibody dynamics. Multibody Syst. Dyn. 2015, 34, 211–242. [Google Scholar] [CrossRef]
- Dhadwal, M.K.; Jung, S.N. Multifield variational sectional analysis for accurate stress computation of multilayered composite beams. AIAA J. 2019, 57, 1702–1714. [Google Scholar] [CrossRef]
- Carrera, E.; Giunta, G. Refined beam theories based on a unified formulation. Int. J. Appl. Mech. 2010, 2, 117–143. [Google Scholar] [CrossRef]
- Carrera, E.; de Miguel, A.; Pagani, A. Hierarchical theories of structures based on Legendre polynomial expansions with finite element applications. Int. J. Mech. Sci. 2017, 120, 286–300. [Google Scholar] [CrossRef]
- Heyliger, P.R. Elasticity alternatives to generalized Vlasov and Timoshenko models for composite beams. Compos. Struct. 2016, 145, 80–88. [Google Scholar] [CrossRef]
- Yu, W.; Hodges, D.H. Elasticity solutions versus asymptotic sectional analysis of homogeneous, isotropic, prismatic beams. J. Appl. Mech. 2004, 71, 15–23. [Google Scholar] [CrossRef]
- Ho, J.C. Shear Stiffness of Homogeneous, Orthotropic, Prismatic Beams. AIAA J. 2017, 55, 4357–4363. [Google Scholar] [CrossRef]
- Smith, E.C.; Chopra, I. Formulation and evaluation of an analytical model for composite box beams. J. Am. Helicopter Soc. 1991, 36, 23–35. [Google Scholar] [CrossRef]
- Jung, S.N.; Nagaraj, V.T.; Chopra, I. Refined structural model for thin- and thick-walled composite rotor blades. AIAA J. 2002, 40, 105–116. [Google Scholar] [CrossRef]
- Librescu, L.; Song, O. Thin-Walled Composite Beams: Theory and Application; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Zhang, C.; Wang, S. Structural mechanical modeling of thin-walled closed-section composite beams, Part 1: Single-cell cross section. Compos. Struct. 2014, 113, 12–22. [Google Scholar] [CrossRef]
- Vo, T.P.; Lee, J. Flexural–torsional behavior of thin-walled closed-section composite box beams. Eng. Struct. 2007, 29, 1774–1782. [Google Scholar] [CrossRef] [Green Version]
- Vieira, R.; Virtuoso, F.; Pereira, E. A higher order model for thin-walled structures with deformable cross-sections. Int. J. Solids Struct. 2014, 51, 575–598. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Bauchau, O.A. On the analysis of thin-walled beams based on Hamiltonian formalism. Comput. Struct. 2016, 170, 37–48. [Google Scholar] [CrossRef]
- Deo, A.; Yu, W. Thin-walled composite beam cross-sectional analysis using the mechanics of structure genome. Thin-Walled Struct. 2020, 152, 106663. [Google Scholar] [CrossRef]
- Volovoi, V.V.; Hodges, D.H. Theory of anisotropic thin-walled beams. J. Appl. Mech. 2000, 67, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Hodges, D.H. Best Strip-Beam Properties Derivable from Classical Lamination Theory. AIAA J. 2008, 46, 1719–1724. [Google Scholar] [CrossRef]
- Harursampath, D.; Harish, A.B.; Hodges, D.H. Model reduction in thin-walled open-section composite beams using variational asymptotic method. Part I: Theory. Thin-Walled Struct. 2017, 117, 356–366. [Google Scholar] [CrossRef]
- Reissner, E.; Tsai, W.T. Pure bending, stretching, and twisting of anisotropic cylindrical shells. J. Appl. Mech. 1972, 39, 148–154. [Google Scholar] [CrossRef]
- Tsai, W. On the problem of flexure of anisotropic cylindrical shells. Int. J. Solids Struct. 1973, 9, 1155–1175. [Google Scholar] [CrossRef]
- Reissner, E. On mixed variational formulations in finite elasticity. Acta Mech. 1985, 56, 117–125. [Google Scholar] [CrossRef]
- Murakami, H.; Reissner, E.; Yamakawa, J. Anisotropic beam theory with shear deformation. J. Appl. Mech. 1996, 63, 660–668. [Google Scholar] [CrossRef]
- Kraus, H. Thin Elastic Shells; Wiley: New York, NY, USA, 1967. [Google Scholar]
- Jones, R.M. Mechanics of Composite Materials, 2nd ed.; Taylor and Francis: Boca Raton, FL, USA, 1999. [Google Scholar]
- Jung, S.N.; Lee, J.Y. Closed-form analysis of thin-walled composite I-beams considering non-classical effects. Compos. Struct. 2003, 60, 9–17. [Google Scholar] [CrossRef]
- Liu, X.; Yu, W. A novel approach to analyze beam-like composite structures using mechanics of structure genome. Adv. Eng. Softw. 2016, 100, 238–251. [Google Scholar] [CrossRef]
- Popsecu, B.; Hodges, D.H. On asymptotically correct Timoshenko-like anisotropic beam theory. Int. J. Solids Struct. 2000, 37, 535–558. [Google Scholar] [CrossRef]
- Krenk, S.; Couturier, P.J. Equilibrium-based nonhomogeneous anisotropic beam element. AIAA J. 2017, 55, 2773–2782. [Google Scholar] [CrossRef] [Green Version]
- Dhadwal, M.K.; Jung, S.N. Generalized multifield variational formulation with interlaminar stress continuity for multilayered anisotropic beams. Compos. B Eng. 2019, 168, 476–487. [Google Scholar] [CrossRef]
Stiffness | NABSA [34] | Krenk et al. (2017) [35] (%) 1 | Dhadwal et al. (2019) [36] (%) 1 | Present (%) 1 |
---|---|---|---|---|
K11 (N) | 6.0938 × 106 | 6.1100 × 106 (0.27) | 6.1200 × 106 (0.43) | 6.1124 × 106 (0.31) |
K12 (N) | 8.1843 × 105 | 8.1900 × 105 (0.07) | 8.1600 × 105 (−0.30) | 8.1413 × 105 (−0.53) |
K22 (N) | 3.9320 × 105 | 3.9400 × 105 (0.20) | 3.9500 × 105 (0.46) | 3.8774 × 105 (−1.39) |
K33 (N) | 1.7570 × 105 | 1.7600 × 105 (0.17) | 1.7700 × 105 (0.74) | 1.7247 × 105 (−1.83) |
K44 (N-m2) | 4.9645 × 101 | 4.9800 × 101 (0.31) | 5.0000 × 101 (0.71) | 4.9093 × 101 (−1.11) |
K45 (N-m2) | −5.1654 × 101 | −5.1800 × 101 (0.28) | −5.1500 × 101 (−0.30) | −5.1503 × 101 (−0.29) |
K55 (N-m2) | 1.7448 × 102 | 1.7500 × 102 (0.30) | 1.7500 × 102 (0.30) | 1.7439 × 102 (−0.05) |
K66 (N-m2) | 4.1036 × 102 | 4.1000 × 102 (−0.09) | 4.1200 × 102 (0.40) | 4.0844 × 102 (−0.47) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, J.S.; Jung, S.N. Closed-Form Analysis of Thin-Walled Composite Beams Using Mixed Variational Approach. Aerospace 2022, 9, 576. https://doi.org/10.3390/aerospace9100576
Bae JS, Jung SN. Closed-Form Analysis of Thin-Walled Composite Beams Using Mixed Variational Approach. Aerospace. 2022; 9(10):576. https://doi.org/10.3390/aerospace9100576
Chicago/Turabian StyleBae, Jae Seong, and Sung Nam Jung. 2022. "Closed-Form Analysis of Thin-Walled Composite Beams Using Mixed Variational Approach" Aerospace 9, no. 10: 576. https://doi.org/10.3390/aerospace9100576
APA StyleBae, J. S., & Jung, S. N. (2022). Closed-Form Analysis of Thin-Walled Composite Beams Using Mixed Variational Approach. Aerospace, 9(10), 576. https://doi.org/10.3390/aerospace9100576