Numerical Investigation on Unsteady Shock Wave/Vortex/Turbulent Boundary Layer Interactions of a Hypersonic Vehicle during Its Shroud Separation
Abstract
:1. Introduction
2. Model Description
2.1. Models of Vehicle and Shroud
2.2. Process of Hypersonic Shroud Separation
3. Numerical Method and Validation
3.1. Numerical Method
3.1.1. Software and Governing Equation
3.1.2. IDDES Method
3.1.3. HLLE++ Scheme
3.1.4. Time Stepping
3.2. Mesh Generation
3.2.1. Conservative Overset Mesh Method
3.2.2. Mesh Generation for Shroud Separation
3.3. Verifications and Validations
3.3.1. Mesh Independency Verification
3.3.2. Time Independency Verification
3.3.3. IDDES Method Verification
3.3.4. Validation of the Numerical Method of Hypersonic Multi-Bodies Separation
4. Results and Discussion
4.1. Multi-Body Separation Characteristics
4.2. Shock Wave/Vortex/Boundary Layer Interaction
4.2.1. Generation and Expansion of Separation Vortexes
4.2.2. Transfer of A-Type Vortex
4.2.3. Dissipation of the Vortex Cone
4.3. Discussions
4.3.1. The Flow Characteristics during Shroud Separation
4.3.2. The Expansion-Transfer-Dissipation of the A-Type Vortex
4.3.3. The Generation and Transfer Mechanisms of the A-Type Vortex
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Nomenclature
P∞ | Pressure of free-stream flow |
T∞ | Temperature of free-stream flow |
Mach | Mach number |
DES | Detached-eddy simulation |
DDES | Delayed detached-eddy simulation |
IDDES | Improved delayed-detached-eddy simulation |
δ | The thickness of the boundary layer |
Cl | Lift coefficient |
Cd | Drag coefficient |
My | Pitching moment coefficient |
L/D | Lift–drag ratio |
Volume of the control volume | |
Conservative state vector | |
Wall velocity | |
Outward-pointing normal unit vector | |
Inviscid flux vector | |
Viscous flux vector | |
Density | |
Total energy | |
Contravariant velocity | |
Pressure | |
Viscous stress | |
RANS length scale | |
WMLES length scale | |
Eigenvalue of HLLE++ | |
Eigenvalue of HLLE+ | |
Switching function | |
Pressure gradient-based switch sensor |
References
- Xu, S.; Wang, Y.; Wang, Z.; Fan, X.; Zhao, X. Design and analysis of a hypersonic inlet with an integrated bump/forebody. Chin. J. Aeronaut. 2019, 32, 2267–2274. [Google Scholar] [CrossRef]
- JIANG, Z.; Zhang, Z.; Liu, Y.; Wang, C.; Luo, C. The criteria for hypersonic airbreathing propulsion and its experimental verification. Chin. J. Aeronaut. 2020, 34, 94–104. [Google Scholar] [CrossRef]
- Kimmel, R.L.; Adamczak, D.W.; Hartley, D.; Alesi, H.; Frost, M.A.; Pietsch, R.; Shannon, J.; Silvester, T. Hypersonic International Flight Research Experimentation-5b Flight Overview. J. Spacecr. Rocket. 2018, 55, 1303–1314. [Google Scholar] [CrossRef]
- Available online: https://baike.baidu.com/item/HTV-2/9231692?fr=aladdin (accessed on 1 September 2022).
- Wang, S.; Li, C.; Chen, W. Numerical investigation on unsteady flows with an air-breathing hypersonic vehicle during its shroud separation. In Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China, 6–9 March 2017. AIAA-2017-2335. [Google Scholar]
- Guthrie, M.; Ross, M.R. Deriving transmissibility functions with finite elements for specifications. J. Spacecr. Rocket. 2022, 59, 271–285. [Google Scholar] [CrossRef]
- Zaitsev, B.P.; Protasova, T.V.; Smetankina, N.V.; Klymenko, D.V.; Larionov, I.F.; Akimov, D.V. Oscillations of the payload fairing body of the cyclone-4 m launch vehicle during separation. Strength. Mater. 2021, 52, 849–863. [Google Scholar] [CrossRef]
- Whalley, I. Development of the STARS II shroud separation system. In Proceedings of the 37th Joint Propulsion Conference and Exhibit, Salt Lake City, UT, USA, 8–11 July 2001. AIAA-2001-3769. [Google Scholar]
- Tsutsumi, S.; Takaki, R.; Takama, Y.; Imagawa, K.; Nakakita, K.; Kato, H. Hybrid LES/RANS simulations of transonic flowfield around a rocket fairing. In Proceedings of the 30th AIAA Applied Aerodynamics Conference, New Orleans, LA, USA, 25–28 June 2012. AIAA-2012-2900. [Google Scholar]
- Dagan, Y.; Arad, E. Analysis of shroud release applied for high-velocity missiles. J. Spacecr. Rocket. 2014, 51, 57–65. [Google Scholar] [CrossRef]
- Chamberlain, R. Time-accurate calculation of the HEDI shroud separation event. In Proceedings of the Annual Interceptor Technology Conference, Huntsville, AL, USA, 19–21 May 1992. AIAA-92-2775. [Google Scholar]
- Raj, A.; Anandhanarayanan, K.; Krishnamurthy, R.; Chakraborty, D. Numerical simulation of fairing separation test for hypersonic air breathing vehicle. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2016, 231, 319–325. [Google Scholar] [CrossRef]
- Zhong, Q.; Fan, Y.; Wu, W. A switching-based control method for the fairing separation control of axisymmetric hypersonic vehicles. Aerospace 2022, 9, 132. [Google Scholar] [CrossRef]
- Holden, M.; Smolinski, G.; Mundy, E.; MacLean, M.; Wadhams, T.; Walker, B. Experimental studies for hypersonic vehicle design and code validation of unsteady flow characteristics associated with "free flight" shroud and stage separation, and mode switching. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 7–10 January 2008. AIAA-2008-642. [Google Scholar]
- Hong, Y.; Li, Z.; Yang, J. Scaling of interaction lengths for hypersonic shock wave/turbulent boundary layer interactions. Chin. J. Aeronaut. 2021, 34, 504–509. [Google Scholar] [CrossRef]
- Ben, H.S.I.; Fournier, G.; Tenaud, C. On the Behaviour of High-Order One-Step Monotonicity-Preserving Scheme for Direct Numerical Simulation of Shocked Turbulent Flows. Int. J. Comput. Fluid Dyn. 2020, 34, 671–704. [Google Scholar]
- Available online: https://baijiahao.baidu.com/s?id=1646388275128676313 (accessed on 5 September 2022).
- Chen, J.; Wu, X.; Zhang, J.; Li, B.; Jia, H.; Zhou, N. FlowStar: A general unstructured-grid CFD software of National Numerical Windtunnel (NNW) project. Acta Aeronaut. Astronaut. Sin. 2021, 42, 625739. [Google Scholar]
- Tang, J.; Cui, P.; Li, B.; Zhang, Y.; Si, H. Parallel hybrid mesh adaptation by refinement and coarsening. Graph. Models 2020, 111, 101084. [Google Scholar] [CrossRef]
- Tang, J.; Ma, M.; Li, B.; Cui, P. A local and fast interpolation method for mesh deformation. Prog. Comput. Fluid Dyn. 2019, 19, 282–292. [Google Scholar] [CrossRef]
- Cui, P.; Zhou, G.; Zhang, Y.; Jia, H.; Wu, X.; Ma, M.; Li, H.; Chen, B. Improved Delayed Detached-Eddy Investigations on the Flow Control of the Leading-Edge Flat Spoiler of the Cavity in the Low-Aspect-Ratio Aircraft. Aerospace 2022, 9, 526. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, J.; Li, B.; Zhou, N. Unsteady flow simulation with mesh adaptation. Int. J. Mod. Phys. B 2020, 34, 2040080. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, J.; Li, B.; Cui, P.; Zhou, N. Parallel algorithms for unstructured hybrid mesh adaptation. Acta Aeronaut. Astronaut. Sin. 2020, 41, 123202. [Google Scholar]
- Cui, P.; Li, B.; Tang, J.; Chen, J.; Deng, Y. A modified adjoint-based grid adaptation and error correction method for unstructured grid. Int. J. Mod. Phys. B. 2018, 32, 1840020. [Google Scholar] [CrossRef]
- Cui, P.; Deng, Y.; Tang, J.; Li, B. Adjoint equations-based grid adaptation and error correction. Acta Aeronaut. Astronaut. Sin. 2016, 37, 2992–3002. [Google Scholar]
- Venkatakrishnan, V. On the accuracy of limiters and convergence to steady state solutions. In Proceedings of the 31st Aerospace Sciences Meeting, Reno, NV, USA, 11–14 January 1993. AIAA-93-0880. [Google Scholar]
- Xue, Y.; Wang, L.; Fu, S. Detached-eddy simulation of supersonic flow past a spike-tipped blunt nose. Chin. J. Aeronaut. 2018, 31, 1815–1821. [Google Scholar] [CrossRef]
- Boudreau, M.; Dumas, G.; Veilleux, J.C. Assessing the ability of the DDES turbulence modeling approach to simulate the wake of a bluff body. Aerospace 2017, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, V.; Squires, K.D.; Forsythe, J.R. Prediction of separated flow characteristics over a hump. AIAA J. 2006, 42, 252–262. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Jin, D.; Dai, H.; Gan, T.; Wu, Y. Effect of a transverse plasma jet on a shock wave induced by a ramp. Chin. J. Aeronaut. 2017, 30, 1854–1865. [Google Scholar] [CrossRef]
- Tramel, R.; Nichols, R.; Buning, P. Addition of improved shock-capturing schemes to OVERFLOW 2.1. In Proceedings of the 19th AIAA Computational Fluid Dynamics, San Antonio, TX, USA, 22–25 June 2009. AIAA-2009-3988. [Google Scholar]
- Zhang, P.; Luo, L.; Jia, H.; Zhao, W.; Zhang, Y.; Wu, X. Application of HLLE++ scheme in the simulation of high Mach number cavity flow. Chin. J. Comput. Mech. 2021. Available online: https://kns.cnki.net/kcms/detail/21.1373.O3.20210925.1031.018.html (accessed on 26 September 2021).
- Zhang, P.; Cheng, X.; Chen, H.; Jia, H.; Luo, L.; Tang, Y. Study on unsteady flow mechanism of high Mach number cavity. J. B. Univ. Aeronaut. Astronaut 2022. Available online: https://doi.org/10.13700/j.bh.1001-5965.2021.0609 (accessed on 10 March 2022).
- McDaniel, D.R.; Nichols, R.H.; Eymann, T.A.; Starr, R.E.; Morton, S.A. Accuracy and Performance Improvements to Kestrel’s Near-Body Flow Solver. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. AIAA-2016-1051. [Google Scholar]
- Bond, R.B.; Nichols, R.; Power, G.D. Extension of Kestrel to General Thermochemical Models, Part, I. In Proceedings of the 46th AIAA Thermophysics Conference, Washington, DC, USA, 13–17 June 2016. AIAA-2016-4435. [Google Scholar]
- Blazek, J. Computational Fluid Dynamics: Principles and Applications, 1st ed.; Elsevier: Oxford, UK, 2001; pp. 181–216. [Google Scholar]
- Cui, P.; Li, B.; Tang, J.; Gong, X.; Ma, M. An improved tri-linear interpolation method for hybrid overset grids and its application. In Proceedings of the Asia-Pacific International Symposium on Aerospace Technology, Chengdu, China, 16–18 October 2018. [Google Scholar]
- Cui, P.; Tang, J.; Li, B.; Ma, M.; Deng, Y. Conservative interpolation method of overlapping grids based on super grids. Acta Aeronaut. Astronaut. Sin. 2018, 39, 121596. [Google Scholar]
- Mancini, S.; Kolb, A.; Gonzalez-Martino, I.; Casalino, D. Very-Large Eddy Simulations of the M219 Cavity at High-Subsonic and Supersonic Conditions. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. AIAA-2019-1833. [Google Scholar]
- Lyubimov, D.; Fedorenko, A. External flow velocity and synthetic jets parameters influence on cavity flow structure and acoustics characteristics using RANS/ILES. Int. J. Aeroacoust. 2018, 17, 259–274. [Google Scholar] [CrossRef]
- Yan, P.; Zhang, Q.; Li, J. Numerical study of strong interplay between cavity and store during launching. J. Mech. 2018, 34, 103–112. [Google Scholar] [CrossRef]
- Mancini, S.; Kolb, A.; Gonzalez-Martino, I.; Casalino, D. Predicting high-speed feedback mechanisms in rectangular cavities using lattice-Boltzmann very-large eddy simulations. Aerosp. Sci. Technol. 2021, 117, 106908. [Google Scholar] [CrossRef]
- Allen, R.; Mendonca, F. DES Validations of Cavity Acoustics over the Subsonic to Supersonic Range. In Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference, Manchester, Great Britain, UK, 10–12 May 2004. AIAA-2004-2862. [Google Scholar]
- Lin, J.; Wang, X.; Zhong, J.; Xie, Z.; Pi, Y.; Zhao, J. Investigation and application of high Mach number multi-body separation test technique. J. Propuls. Technol. 2020, 41, 925–933. [Google Scholar]
- Clemens, N.T.; Narayanaswamy, V. Low frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu. Rev. Fluid Mech. 2014, 46, 469–492. [Google Scholar] [CrossRef]
- Fan, X.; Tang, Z.; Wang, G.; Yang, Y. Review of low-frequency unsteadiness in shock-wave/turbulent boundary-layer interaction. Acta Aeronaut. Astronaut. Sin. 2022, 43, 625917. [Google Scholar]
Hypersonic Vehicles | Velocity (Mach) | Altitude (km) |
---|---|---|
HTV-2 (America) | 5–7 | 20–40 |
ARRW (America) | 6.5–8 | 20–35 |
Dagger (Russia) | 6–10 | 20–35 |
Zircon (Russia) | 5–9 | unknown |
DF-17 (China) | unknown | unknown |
DF-XX (China) | unknown | unknown |
HSTDV (India) | 6 | 20–30 |
Researchers | Theme | Conditions |
---|---|---|
Guthrie | structural analysis | outer space |
Zaitsev | structural analysis | outer space |
Whalley | overall design | outer space |
Tsutsumi | flow analysis | Mach = 0.8, Re = 2.66 × 106 |
Dagan | flow analysis | Mach = 1.1–2.5 |
Chamberlain | aerodynamic analysis | Mach = 8.0, Euler method |
Raj | kinematic analysis | test conditions: 0.6–0.7 |
Holden | kinematic analysis | Mach = 3.5–6.0 |
Wang | flow and kinematic analysis | Mach = 6.0, altitude = 26.0 km, RANS |
Mass (kg) | Coordinates of the Mass Center Point (m) | Moment of Inertia with Respect to the Mass Center (kg·m2) | |
---|---|---|---|
upper shroud | 12.677 | x = 0.4649 y = 0.0 z = 0.0432 | Ixx = 0.0390 Iyy = 0.5393 Izz = 0.5656 |
lower shroud | 12.230 | x = 0.4801 y = 0.0 z = -0.0447 | Ixx = 0.0386 Iyy = 0.4538 Izz = 0.4802 |
vehicle | 1076.550 | x = 1.6089 y = 0.0 z = 0.0 | Ixx = 13.1866 Iyy = 273.4137 Izz = 273.4137 |
P∞ | T∞ | Altitude | Mach | Attack Angle | Sideslip Angle |
---|---|---|---|---|---|
2549.22 Pa | 221.552 K | 25 km | 7.0 | 0 | 0 |
P0/kPa | T∞/K | P∞/kPa | Mach | q∞/kPa |
---|---|---|---|---|
1349 | 360 | 2.549 | 5.0 | 44.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, P.; Jia, H.; Chen, J.; Zhou, G.; Wu, X.; Ma, M.; Li, H.; Tang, J. Numerical Investigation on Unsteady Shock Wave/Vortex/Turbulent Boundary Layer Interactions of a Hypersonic Vehicle during Its Shroud Separation. Aerospace 2022, 9, 619. https://doi.org/10.3390/aerospace9100619
Cui P, Jia H, Chen J, Zhou G, Wu X, Ma M, Li H, Tang J. Numerical Investigation on Unsteady Shock Wave/Vortex/Turbulent Boundary Layer Interactions of a Hypersonic Vehicle during Its Shroud Separation. Aerospace. 2022; 9(10):619. https://doi.org/10.3390/aerospace9100619
Chicago/Turabian StyleCui, Pengcheng, Hongyin Jia, Jiangtao Chen, Guiyu Zhou, Xiaojun Wu, Mingsheng Ma, Huan Li, and Jing Tang. 2022. "Numerical Investigation on Unsteady Shock Wave/Vortex/Turbulent Boundary Layer Interactions of a Hypersonic Vehicle during Its Shroud Separation" Aerospace 9, no. 10: 619. https://doi.org/10.3390/aerospace9100619
APA StyleCui, P., Jia, H., Chen, J., Zhou, G., Wu, X., Ma, M., Li, H., & Tang, J. (2022). Numerical Investigation on Unsteady Shock Wave/Vortex/Turbulent Boundary Layer Interactions of a Hypersonic Vehicle during Its Shroud Separation. Aerospace, 9(10), 619. https://doi.org/10.3390/aerospace9100619