A Fuzzy Backstepping Attitude Control Based on an Extended State Observer for a Tilt-Rotor UAV
Abstract
:1. Introduction
2. Design of the FBS-ESO Controller for the Second-Order System
2.1. Second-Order Nonlinear Expansion System
2.2. Fuzzy Backstepping Control Law
- (1)
- Define the Lyapunov function , then
- (2)
- Define the Lyapunov function
- (1)
- Fuzzy Rules
- (2)
- Fuzzy Reasoning
- (3)
- Ambiguity Resolution
2.3. Extended State Observer
3. Attitude Control Design of the Tilt-Rotor UAV
3.1. Attitude Dynamics Model
3.2. Attitude Control Law
3.3. Manipulation Strategy
4. Attitude Control Verification of the Tilt-Rotor UAV
4.1. Hardware-in-Loop Simulation System
4.2. Attitude Control Test
4.2.1. Stability Test
4.2.2. Anti-Disturbance Test
4.2.3. Robustness Test
5. Conclusions
- (1)
- Changing the rotor tilt angle will destroy the stability of a traditional backstepping controller and ADRC. In contrast, the FBS-ESO controller maintains good control performance.
- (2)
- The performance of the FBS-ESO controller will not be significantly affected by adding an external gust disturbance or changing the UAV parameters in the simulation. These disturbances significantly impact a traditional backstepping controller and ADRC.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halbe, O.; Hajek, M. A continuous multivariable finite-time super-twisting attitude and rate controller for improved rotorcraft handling. Aerospace 2022, 9, 6. [Google Scholar] [CrossRef]
- Stojaković, P.; Rašuo, B. Single propeller airplane minimal flight speed based upon the lateral maneuver condition. Aerosp. Sci. Technol. 2016, 49, 239–249. [Google Scholar] [CrossRef]
- Stojaković, P.; Velimirović, K.; Rašuo, B. Power optimization of a single propeller airplane take-off run on the basis of lateral maneuver limitations. Aerosp. Sci. Technol. 2018, 72, 553–563. [Google Scholar] [CrossRef]
- Ducard, G.; Allenspach, M. Review of designs and flight control techniques of hybrid and convertible VTOL UAVs. Aerosp. Sci. Technol. 2021, 8, 1–25. [Google Scholar] [CrossRef]
- Lu, K.; Tian, H.; Zhen, P.; Lu, S.; Chen, R. Conversion flight control for tiltrotor aircraft via active disturbance rejection control. Aerospace 2022, 9, 155. [Google Scholar] [CrossRef]
- Rohr, D.; Studiger, M.; Stastny, T.; Lawrance, N.R.J.; Siegwart, R. Nonlinear model predictive velocity control of a VTOL tiltwing UAV. IEEE Robot. Autom. Lett. 2021, 6, 5776–5783. [Google Scholar] [CrossRef]
- Toth, R. Modeling and Identification of Linear Parameter-Varying Systems; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Zheng, P.; Tan, X.; Kocer, B.B.; Yang, E.; Kovac, M. TiltDrone: A fully-actuated tilting quadrotor platform. IEEE Robot. Autom. Lett. 2022, 5, 6845–6852. [Google Scholar] [CrossRef]
- Papachristos, C.; Alexis, K.; Tzes, A. Design and Experimental Attitude Control of an Unmanned Tilt-Rotor Aerial Vehicle. In Proceedings of the 15th International Conference on Advanced Robotics, Tallinn, Estonia, 20–23 June 2011; pp. 3297–3303. [Google Scholar]
- Houari, A.; Bachir, I.; Mohamed, D.K. PID vs LQR controller for tilt-rotor airplane. Int. J. Electr. Comput. Eng. 2020, 10, 6309–6318. [Google Scholar] [CrossRef]
- Cardoso, D.N.; Raffo, G.V.; Esteban, S. A Robust Adaptive Mixing Control for Improved Forward Flight of a Tilt-Rotor UAV. In Proceedings of the IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Windsor Oceanico Hotel. Rio de Janeiro, Brazil, 1–4 November 2016; pp. 273–281. [Google Scholar]
- Guo, J.D.; Song, Y.G.; Xia, P.Q. Design for model fusion and robust controller of tilt-rotor aircraft. J. Nanjing Univ. Aeronaut. Astronaut. 2011, 43, 393–398. [Google Scholar]
- Papachristos, C.; Alexis, K.; Tzes, A. Model Predictive Hovering-Translation Control of an Unmanned Tri-Tiltrotor. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 659–667. [Google Scholar]
- Papachristos, C.; Alexis, K.; Tzes, A. Technical activities execution with a tiltrotor UAS employing explicit model predictive control. In Proceedings of the 19th World Congress the International Federation of Automatic Control, Cape Town, South Africa, 24–29 August 2014; pp. 156–162. [Google Scholar]
- Papachristos, C.; Alexis, K.; Tzes, A. Dual-authority thrust-vectoring of a tri-tiltrotor employing model predictive control. J. Intell. Robot. Syst. 2015, 81, 1–34. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Sun, J. Attitude control for QTR using exponential nonsingular terminal sliding mode control. J. Syst. Eng. Electron. 2019, 30, 191–200. [Google Scholar]
- Casavola, G.; Gagliardi, A. Fault Detection and Isolation of Electrical Induction Motors via LPV Fault Observers. IFAC Proc. Vol. 2012, 45, 800–805. [Google Scholar] [CrossRef]
- Marcos, A.; Balas, G.J. Development of linear parameter varying models for aircraft. J. Guid. Control Dyn. 2004, 27, 218–228. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.Y.; Balas, G.; Kaya, A. Blending methodology of linear parameter varying control synthesis of f-16 aircraft system. J. Guid. Control. Dyn. 2001, 25, 1040–1048. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Wu, A.; Shang, Y. Multivariable super twisting based robust trajectory tracking control for small unmanned helicopter. Math. Probl. Eng. 2015, 2021, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Autenrieb, J.; Shin, H.S.; Bacic, M. Development of a neural network-based adaptive nonlinear dynamic inversion controller for a tilt-wing VTOL. Aircraft 2019, 42, 44–52. [Google Scholar]
- Hong, H.T.; Yan, R.; Deng, X.F. Fuzzy sliding mode control of four-rotor aircraft. J. Jishou Univ. 2020, 41, 31–35. [Google Scholar]
- Han, J. From PID to active disturbances rejection control. IEEE Trans. Ind. Electron. 2009, 16, 900–906. [Google Scholar] [CrossRef]
- Ai, S.; Song, J.; Cai, G.; Zhao, K. Active Fault-Tolerant Control for Quadrotor UAV against Sensor Fault Diagnosed by the Auto Sequential Random Forest. Aerospace 2022, 9, 518. [Google Scholar] [CrossRef]
- Zhao, K.; Song, J.; Ai, S.; Xu, X.; Liu, Y. Active Fault-Tolerant Control for Near-Space Hypersonic Vehicles. Aerospace 2022, 9, 237. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Duan, D. Manipulation strategy of tilt quad rotor based on active disturbance rejection control. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2020, 234, 1–12. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, H.; Duan, D.; Jiao, Y.; Li, J. Application of improved active disturbance rejection control algorithm in tilt quad rotor. Chin. J. Aeronaut. 2020, 33, 1625–1641. [Google Scholar] [CrossRef]
- Shen, S.; Xu, J. Trajectory tracking active disturbance rejection control of the unmanned helicopter and its parameters tuning. IEEE Access 2021, 9, 56773–56785. [Google Scholar] [CrossRef]
- Li, Z.B.; Dong, Q.L.; Zhang, X.Y. Impact angle-constrained integrated guidance and control for supersonic skid-to-turn missiles using backstepping with global fast terminal sliding mode control. Aerosp. Sci. Technol. 2022, 122, 1–17. [Google Scholar] [CrossRef]
- Lungu, M. Backstepping and dynamic inversion control techniques for automatic landing of fixed wing unmanned aerial vehicles. Aerosp. Sci. Technol. 2022, 122, 1–20. [Google Scholar] [CrossRef]
- Pan, Z.; Chi, C.; Zhang, J. Nonlinear attitude control of tilt-rotor aircraft based on active disturbance rejection sliding mode theory. Aero Weapon. 2018, 58, 44–49. [Google Scholar]
- Welcer, M.; Szczepański, C.; Krawczyk, M. The impact of sensor errors on flight stability. Aerospace 2022, 9, 169. [Google Scholar] [CrossRef]
NB | NS | ZO | PS | PB | ||
---|---|---|---|---|---|---|
NB | PB | PS | PS | PS | ZO | |
NS | PB | PS | PS | ZO | ZO | |
ZO | PS | PS | ZO | ZO | NS | |
PS | PS | ZO | NS | NS | NS | |
PB | ZO | ZO | NS | NS | NB |
NB | NS | ZO | PS | PB | ||
---|---|---|---|---|---|---|
NB | NB | NB | NS | NS | PS | |
NS | NS | NS | ZO | ZO | PS | |
ZO | NS | ZO | PS | PS | PS | |
PS | NS | ZO | ZO | PS | PB | |
PB | ZO | PS | PS | PB | PB |
Mode | Roll | Pitch | Yaw |
---|---|---|---|
helicopter mode | collective differential | longitudinal variation | longitudinal variation differential |
transition mode | collective differential plus aileron | longitudinal variation plus elevator | longitudinal variation differential plus rudder |
fixed-wing mode | aileron | elevator | rudder |
Parameter | Unit | Initial Value | Modify Value |
---|---|---|---|
total weight | kg | 3000 | 2400 |
rotor radius | m | 3 | |
number of blades | - | 3 | |
rotor velocity | rad/s | 70 | |
wing area | m2 | 10 | |
kg·m2 | 7391 | 5912 | |
kg·m2 | 48,847 | 39,000 | |
kg·m2 | 52,524 | 42,000 |
BS | ADRC | FBS-ESO | |
---|---|---|---|
[4 1 1] | [10 2 5] | [4 1 1] | |
c1 | [160 150 120] | - | [160 150 120] |
c2 | [160 150 120] | - | [160 150 120] |
r | - | [10 10 10] | - |
h | - | [0.5 0.5 0.5] | - |
- | [20 56 12] | - | |
- | [2 7 3] | - | |
- | [1 4 12] | [4 24 50] | |
- | [10 24 28] | [65 80 80] | |
- | [10 12 10] | [5 8 2] | |
- | [0.01 0.01 0.01] | [0.01 0.01 0.01] | |
- | [0.25 0.25 0.75] | [0.5 0.5 0.5] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, S.; Xu, J.; Xia, Q. A Fuzzy Backstepping Attitude Control Based on an Extended State Observer for a Tilt-Rotor UAV. Aerospace 2022, 9, 724. https://doi.org/10.3390/aerospace9110724
Shen S, Xu J, Xia Q. A Fuzzy Backstepping Attitude Control Based on an Extended State Observer for a Tilt-Rotor UAV. Aerospace. 2022; 9(11):724. https://doi.org/10.3390/aerospace9110724
Chicago/Turabian StyleShen, Suiyuan, Jinfa Xu, and Qingyuan Xia. 2022. "A Fuzzy Backstepping Attitude Control Based on an Extended State Observer for a Tilt-Rotor UAV" Aerospace 9, no. 11: 724. https://doi.org/10.3390/aerospace9110724
APA StyleShen, S., Xu, J., & Xia, Q. (2022). A Fuzzy Backstepping Attitude Control Based on an Extended State Observer for a Tilt-Rotor UAV. Aerospace, 9(11), 724. https://doi.org/10.3390/aerospace9110724