Deep Muti-Modal Generic Representation Auxiliary Learning Networks for End-to-End Radar Emitter Classification
Abstract
:1. Introduction
2. Methodology
2.1. Signal Model
2.2. MGRALN-Based REC
3. Simulation Results
3.1. Data Colletion and Implementation Details
3.2. Recognition Performance of MGRALN
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobre, O. Signal identifification for emerging intelligent radios: Classical problems and new challenges. IEEE Instrum. Meas. Mag. 2015, 18, 11–18. [Google Scholar] [CrossRef]
- Kim, L.S.; Bae, H.B.; Kil, R.M.; Jo, C.H. Classification of the trained and untrained emitter types based on class probability output networks. Neurocomputing 2017, 248, 67–75. [Google Scholar] [CrossRef]
- Li, X.; Huang, Z.; Wang, F.; Wang, X.; Liu, T. Toward Convolutional Neural Networks on Pulse Repetition Interval Modulation Recognition. IEEE Commun. Lett. 2018, 22, 2286–2289. [Google Scholar] [CrossRef]
- Sun, J.; Shi, W.; Yang, Z.; Yang, J.; Gui, G. Behavioral modeling and linearization of wideband RF power amplifiers using BiLSTM networks for 5G wireless systems. IEEE Trans. Veh. Technol. 2019, 68, 10348–10356. [Google Scholar] [CrossRef]
- Polak, A.C.; Dolatshahi, S.; Goeckel, D.L. Identifying wireless users via transmitter imperfections. IEEE J. Sel. Areas Commun. 2011, 29, 1469–1479. [Google Scholar] [CrossRef]
- Reising, D.R.; Temple, M.A.; Jackson, J.A. Authorized and rogue device discrimination using dimensionally reduced RF-DNA fifingerprints. IEEE Trans. Inf. Forensics Secur. 2015, 10, 1180–1192. [Google Scholar] [CrossRef]
- Qi, P.; Zhou, X.; Zheng, S.; Li, Z. Automatic modulation classification based on deep residual networks with multimodal information. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 21–33. [Google Scholar] [CrossRef]
- Ramkumar, B. Automatic modulation classification for cognitive radios using cyclic feature detection. IEEE Circuits Syst. Mag. 2009, 9, 27–45. [Google Scholar] [CrossRef]
- Cao, R.; Cao, J.; Mei, J.; Yin, C.; Huang, X. Radar emitter identification with bispectrum and hierarchical extreme learning machine. Multimed. Tools Appl. 2019, 78, 28953–28970. [Google Scholar] [CrossRef]
- Xu, Q.; Zheng, R.; Saad, W.; Han, Z. Device fingerprinting in wireless networks: Challenges and opportunities. IEEE Commun. Surv. Tutorials 2016, 18, 94–104. [Google Scholar] [CrossRef]
- Zheng, J.; Lv, Y. Likelihood-based automatic modulation classification in ofdm with index modulation. IEEE Trans. Veh. Technol. 2018, 67, 8192–8204. [Google Scholar] [CrossRef]
- Wei, W.; Mendel, J.M. Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Trans. Commun. 2000, 48, 189–193. [Google Scholar] [CrossRef]
- Hameed, F.; Dobre, O.A.; Popescu, D. On the likelihood-based approach to modulation classification. IEEE Trans. Wirel. Commun. 2009, 8, 5884–5892. [Google Scholar] [CrossRef]
- Al-Sa’d, M.; Boashash, B.; Gabbouj, M. Design of an optimal piece-wise spline wigner-ville distribution for TFD performance evaluation and comparison. IEEE Trans. Signal Process. 2021, 69, 3963–3976. [Google Scholar] [CrossRef]
- Zhang, M.; Diao, M.; Guo, L. Convolutional neural networks for automatic cognitive radio waveform recognition. IEEE Access 2017, 5, 11074–11082. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Gan, C.; Sun, S.; Wang, M. Automatic modulation classification using convolutional neural network with features fusion of SPWVD and BJD. IEEE Trans. Signal Inf. Process. Over Netw. 2019, 5, 469–478. [Google Scholar] [CrossRef]
- Li, B.; Wang, W.; Zhang, X.; Zhang, M. Deep learning based automatic modulation classification exploiting the frequency and spatiotemporal domain of signals. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–8. [Google Scholar]
- Zhang, Z.; Luo, H.; Wang, C.; Gan, C.; Xiang, Y. Automatic modulation classification using cnn-lstm based dual-stream structure. IEEE Trans. Veh. Technol. 2020, 69, 13521–13531. [Google Scholar] [CrossRef]
- Graves, A.; Fernández, S.; Schmidhuber, J. Bidirectional LSTM networks for improved phoneme classification and recognition. In Proceedings of the 15th International Conference on Artificial Neural Networks, Bratislava, Slovakia, 15–18 September 2005; Volume II, pp. 799–804. [Google Scholar]
- Sepas-Moghaddam, A.; Etemad, A.; Pereira, F.; Correia, P.L. Facial emotion recognition using light field images with deep attention-based bidirectional LSTM. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 3367–3371. [Google Scholar]
- Liu, S.; Yan, X.; Li, P.; Hao, X.; Wang, K. Radar emitter recognition based on SIFT position and scale features. IEEE Trans. Circuits Syst. II Exp. Briefs 2018, 65, 2062–2066. [Google Scholar] [CrossRef]
- Doan, V.-S.; Huynh-The, T.; Hua, C.-H.; Pham, Q.-V.; Kim, D.-S. Learning Constellation Map with Deep CNN for Accurate Modulation Recognition. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar]
- Kumar, Y.; Sheoran, M.; Jajoo, G.; Yadav, S.K. Automatic Modulation Classification based on Constellation Density using Deep Learning. IEEE Commun. Lett. 2020, 24, 1275–1278. [Google Scholar] [CrossRef]
- Wang, A.; Li, R. Research on Digital Signal Recognition Based on Higher Order Cumulants. In Proceedings of the 2019 International Conference on Intelligent Transportation, Big Data and Smart City (ICITBS), Changsha, China, 12–13 January 2019; pp. 586–588. [Google Scholar]
- Liu, M.; Zhao, Y.; Shi, L.; Dong, J. Research on Recognition Algorithm of Digital Modulation by Higher Order Cumulants. In Proceedings of the 2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control, Harbin, China, 18–20 September 2014; pp. 686–690. [Google Scholar]
- Aslam, M.W.; Zhu, Z.; Nandi, A.K. Automatic Modulation Classification Using Combination of Genetic Programming and KNN. IEEE Trans. Wirel. Commun. 2012, 11, 2742–2750. [Google Scholar]
- Xie, L.; Wan, Q. Cyclic Feature-Based Modulation Recognition Using Compressive Sensing. IEEE Wirel. Commun. Lett. 2017, 6, 402–405. [Google Scholar] [CrossRef]
- Javed, Y.; Bhatti, A. Emitter recognition based on modified x-means clustering. In Proceedings of the IEEE Symposium on Emerging Technologies, Islamabad, Pakistan, 18 September 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 352–358. [Google Scholar]
- He, B.; Wang, F.; Liu, Y.; Wang, S. Specific emitter identification via multiple distorted receivers. In Proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Qin, M.; Li, X.; Yao, Y. An algorithm of digital modulation identification based on instantaneous features. J. Theor. Appl. Inf. Technol. 2013, 50, 396–400. [Google Scholar]
- Triantafyllakis, K.; Surligas, M.; Vardakis, G.; Papadakis, S. Phasma: An automatic modulation classification system based on Random Forest. In Proceedings of the 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, USA, 6–9 March 2017; pp. 1–3. [Google Scholar]
- Narayan, Y. Comparative analysis of SVM and naive Bayes classifier for the SEMG signal classification. Mater. Today Proc. 2020, 37, 3241–3245. [Google Scholar] [CrossRef]
- Güner, A.; Alçin, Ö.F.; Şengür, A. Automatic digital modulation classification using extreme learning machine with local binary pattern histogram features. Measurement 2019, 145, 214–225. [Google Scholar] [CrossRef]
- Wei, Y.; Fang, S.; Wang, X. Automatic modulation classification of digital communication signals using SVM based on hybrid features, cyclostationary, and information entropy. Entropy 2019, 21, 745. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Jiang, H.; Wang, H.; Alwageed, H.; Zhou, Y.; Sebdani, M.M.; Yao, Y. Modulation classification based on signal constellation diagrams and deep learning. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 718–727. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 1995, 3361, 1–14. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the ICLR, San Diego, CA, USA, 8–9 July 2014; pp. 1–15. [Google Scholar]
- Sun, J.; Xu, G.; Ren, W.; Yan, Z. Radar emitter classification based on unidimensional convolutional neural network. IET Radar Sonar Navig. 2018, 12, 862–867. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the CVPR, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Zhao, S.; Wang, W.; Zeng, D.; Chen, X.; Zhang, Z.; Xu, F.; Liu, X. A Novel Aggregated Multipath Extreme Gradient Boosting Approach for Radar Emitter Classification. IEEE Trans. Ind. Electron. 2022, 69, 703–712. [Google Scholar] [CrossRef]
- Huang, H.S.; Liu, L.; Tseng, V.S. Multivariate time series early classification using multi-domain deep neural network. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), Turin, Italy, 1–3 October 2018; pp. 90–98. [Google Scholar]
- Liu, C.; Hsaio, W.; Tu, Y. Time series classification with multivariate convolutional neural network. IEEE Trans. Ind. Electron. 2019, 66, 4788–4797. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, Long Beach, CA, USA, 4–7 December 2017; pp. 5998–6008. [Google Scholar]
T | AF0 | PSD | SE | ||
---|---|---|---|---|---|
Accuracy | |||||
T | |||||
AF0 | 98.4% | 98.4% | 95.9% | ||
PSD | 98.4% | 99.2% | 95.1% | ||
SE | 95.9% | 95.1% | 96.7% |
T | AF0 | PSD | SE | max | ||
---|---|---|---|---|---|---|
Accuracy | ||||||
Dataset | ||||||
Dataset I | 99.2% | 93.4% | 98.4% | 99.2% | ||
Dataset II | 88.5% | 88.7% | 97.9% | 97.9% |
Method | MGRALN | SVM | LSTM | CNN-LSTM | ||
---|---|---|---|---|---|---|
Accuracy | ||||||
Dataset | ||||||
Dataset I | 99.2% | 77.0% | 61.5% | 93.9% | ||
Dataset II | 97.9% | 93.9% | 85.6% | 96.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Yi, Z.; Li, S.; Li, L. Deep Muti-Modal Generic Representation Auxiliary Learning Networks for End-to-End Radar Emitter Classification. Aerospace 2022, 9, 732. https://doi.org/10.3390/aerospace9110732
Zhu Z, Yi Z, Li S, Li L. Deep Muti-Modal Generic Representation Auxiliary Learning Networks for End-to-End Radar Emitter Classification. Aerospace. 2022; 9(11):732. https://doi.org/10.3390/aerospace9110732
Chicago/Turabian StyleZhu, Zhigang, Zhijian Yi, Shiyao Li, and Lin Li. 2022. "Deep Muti-Modal Generic Representation Auxiliary Learning Networks for End-to-End Radar Emitter Classification" Aerospace 9, no. 11: 732. https://doi.org/10.3390/aerospace9110732
APA StyleZhu, Z., Yi, Z., Li, S., & Li, L. (2022). Deep Muti-Modal Generic Representation Auxiliary Learning Networks for End-to-End Radar Emitter Classification. Aerospace, 9(11), 732. https://doi.org/10.3390/aerospace9110732