Development of SMA Spring Linear Actuator for an Autonomous Lock and Release Mechanism: Application for the Gravity-Assisted Pointing System in Moon to Earth Alignment of Directional Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Shape Memory Alloys Actuators
2.2. Lock and Release Mechanism for the NGLR Experiment
2.3. SMA Spring Design and Manufacturing
2.4. SMA Spring Characterization
2.5. Elegant Bread Board (EBB) Model Test
2.6. Preliminary Emittance Measurement of the NiTinol Alloy with an IR Camera
3. Results
- The pulling force needed to remove the sealing pin in Figure 4 was measured;
- As a consequence, the SMA spring of the actuator was designed and built, and its characterization confirmed a pulling force of the SMA spring with an SF > 3.4;
- The structure of the EBB of the actuator was 3D printed, and the activation of the SMA spring with a heat gun demonstrated the adequate design of the SMA spring;
- A preliminary emittance measurement of the NiTinol alloy with an IR camera was performed, and the results are compatible with the limited literature and the geometrical and physical condition of the measured surface.
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turyshev, S.G.; Williams, J.G.; Folkner, W.M.; Gutt, G.M.; Baran, R.T.; Hein, R.C.; Somawardhana, R.P.; Lipa, J.A.; Wang, S. Corner-cube retro-reflector instrument for advanced lunar laser ranging. Exp. Astron. 2012, 36, 1052013–1052135. [Google Scholar] [CrossRef] [Green Version]
- Delle Monache, G.O.; Tata, M.E. Development of a magnetic cardan suspension coupled with a single actuated axis for gravity-assisted pointing of directional devices: A case study of Moon to Earth alignment for a laser ranging retroreflector. Adv. Space Res. 2022; in press. [Google Scholar] [CrossRef]
- Dietz, R.H.; Rhoades, D.E.; Davidson, L.J. Apollo Experience Report—Lunar Module Communication System; NASA TN D-6974; NASA Manned Spacecraft Center: Houston, TX, USA, 1972. [Google Scholar]
- Costanza, G.; Tata, M.E.; Libertini, R. Effect of temperature on the mechanical behaviour of Ni-Ti shape memory sheets. In Proceedings of the 145th Annual Meeting and Exhibition, TMS, Nashville, TN, USA, 14–18 February 2016; pp. 433–439. [Google Scholar]
- Costanza, G.; Tata, M.E.; Calisti, C. Nitinol one-way shape memory springs: Thermomechanical characterization and actuator design. Sens. Act. A 2010, 157, 113–117. [Google Scholar] [CrossRef]
- Costanza, G.; Tata, M.E. Shape Memory Alloys for Aerospace, Recent Developments, and New Applications: A Short Review. Materials 2020, 13, 1856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razov, A.; Cherniavsky, A. Applications of shape memory alloys in space engineering: Paste and future. In Proceedings of the 8th European Space Mechanisms and Tribology Symposium, European Space Agency ESA-SP, Toulouse, France, 29 September–1 October 1999; Volume 438, p. 141. [Google Scholar]
- Tsushiya, K.; Koyano, T.; Todaka, Y.; Umemoto, M. Development of shape memory actuator for cryogenic application. In Next-Generation Actuators Leading Breakthroughs; Springer: London, UK, 2009. [Google Scholar]
- Badescu, M.; Bao, X.; Bar-Cohen, Y. Shape memory alloy (SMA)-based launch lock. In Proceedings of the Proceedings Volume 9061, Sensors and Smart Structure Technologies for Civil, Mechanical and Aerospace Systems, San Diego, CA, USA, 10–13 March 2014; Volume 961. [Google Scholar]
- Hanon, M.M.; Zsidai, L. Comprehending the role of process parameters and filament color on the structure and tribological performance of 3D printed PLA. J. Mater. Res. Technol. 2021, 15, 647–660. [Google Scholar] [CrossRef]
- Savi, M.A.; Pacheco, P.; Garcia, M.S.; Aguiar, R.A.A.; de Souza, L.F.G.; da Hora, R.B. Nonlinear geometric influence on the mechanical behavior of shape memory alloy helical springs. Smart Mater. Struct. 2015, 24, 035012. [Google Scholar] [CrossRef]
- Ma, J.; Huang, H.; Huang, J. Characteristics Analysis and Testing of SMA Spring Actuator. Adv. Mater. Sci. Eng. 2013, 2013, 823594. [Google Scholar] [CrossRef] [Green Version]
- Rodrigue, H.; Wei, W.; Bhandari, B.; Ahn, S.-H. Fabrication of wrist-like SMA-based actuator by double smart soft composite casting. Smart Mater. Struct. 2015, 24, 125003. [Google Scholar] [CrossRef]
- Da Silva, T.C.; Costa Sá, M.V.; Da Silva, E.P.; Da Silva, F.C. Emissivity Measurements on Shape Memory Alloys. In Proceedings of the Quantitative InfraRed Thermography Conference, Quebeck, QC, Canada, 4–8 July 2016. [Google Scholar] [CrossRef]
- Costanza, G.; Paoloni, S.; Tata, M.E. IR thermography and resistivity investigations on Ni-Ti shape memory alloy. Key Eng. Mater. 2014, 605, 23–26. [Google Scholar] [CrossRef]
- Kauder, L. Spacecraft Thermal Control Coatings NASA/TP–2005–212792; Technical Publication NASA/Goddard Space Flight Center: Greenbelt, MD, USA, 2005. [Google Scholar]
- Gilmore, D.G. Spacecraft Thermal Control Handbook, 2nd ed.; Volume 1: Fundamental Technologies; The Aerospace Press: El Segundo, CA, USA, 2002; ISBN 1-884989-11-X. [Google Scholar]
- Kato, H. Latent heat storage capacity of NiTi shape memory alloy. J. Mater. Sci. 2021, 56, 8243–8250. [Google Scholar] [CrossRef]
- Armattoe, K.; Bouby, C.; Haboussi, M.; Ben Zineb, T. Modeling of latent heat effects on phase transformation in shape memory alloy thin structures. Int. J. Solids Struct. 2016, 88-89, 283–295. [Google Scholar] [CrossRef]
- Gaier, J.R. The Effects of Lunar Dust on EVA Systems During the Apollo Missions, NASA/TM—2005-213610; Technical Memorandum NASA/Glenn Research Center: Cleveland, OH, USA, 2005. [Google Scholar]
- Stubbs, T.J.; Vondrak, R.R.; Farrell, W.M. Impact of dust on lunar exploration. In Dust in Planetary Systems, ESA SP-643; NASA Astrophysics Data System: Kauai, HI, USA, 2007. [Google Scholar]
- Heiken, G.H.; Vaniman, D.T.; French, B.M. Lunar Sourcebook, 3.4. Dust; Cambridge University Press: Cambridge, UK, 1991; ISBN 0-521334446. [Google Scholar]
- Budzyń, D.; Tuohy, E.; Garrivier, N.; Schild, T.; Cowley, A.; Cruise, R.; Cammarano, A. Lunar dust: Its impact on hardware and mitigation technologies. In Proceedings of the 46th Aerospace Mechanisms Symposium, Virtual, 11–13 May 2022. [Google Scholar]
- Chakrabarti, A. Engineering Design Synthesis: Understanding, Approaches and Tools; Springer: London, UK, 2002; ISBN 978-1852334925. [Google Scholar]
- Cannon, K.M.; Dreyer, C.B.; Sowers, G.F.; Schmit, J.; Nguyen, T.; Sanny, K.; Schertz, J. Working with lunar surface materials: Review and analysis of dust mitigation and regolith conveyance technologies. Acta Astron. 2022, 196, 259–274. [Google Scholar] [CrossRef]
Composition (wt %) | Af Temperature (°C) | SMA Wire Diameter (mm) | Spring Mid Diameter (mm) | Number of Turns | EAustenite (GPa) |
---|---|---|---|---|---|
50 Ni–50 Ti | 65 | 0.8 | 6 | 20 | 72 |
Parameter | Value (Unit) |
---|---|
Austenite start temperature (As) | 68 °C |
Austenite finish temperature (Af) | 78 °C |
Young’s modulus, Martensite phase (EMSMA) | 28 GPa |
Young’s modulus, Austenite phase (EASMA) | 75 GPa |
Shear modulus, Martensite phase (GMSMA) | 10.56 GPa |
Shear modulus, Austenite phase (GASMA) | 28.20 GPa |
Poisson ratio νSMA | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costanza, G.; Delle Monache, G.O.; Tata, M.E.; Filosi, S. Development of SMA Spring Linear Actuator for an Autonomous Lock and Release Mechanism: Application for the Gravity-Assisted Pointing System in Moon to Earth Alignment of Directional Devices. Aerospace 2022, 9, 735. https://doi.org/10.3390/aerospace9110735
Costanza G, Delle Monache GO, Tata ME, Filosi S. Development of SMA Spring Linear Actuator for an Autonomous Lock and Release Mechanism: Application for the Gravity-Assisted Pointing System in Moon to Earth Alignment of Directional Devices. Aerospace. 2022; 9(11):735. https://doi.org/10.3390/aerospace9110735
Chicago/Turabian StyleCostanza, Girolamo, Giovanni Ottavio Delle Monache, Maria Elisa Tata, and Stefano Filosi. 2022. "Development of SMA Spring Linear Actuator for an Autonomous Lock and Release Mechanism: Application for the Gravity-Assisted Pointing System in Moon to Earth Alignment of Directional Devices" Aerospace 9, no. 11: 735. https://doi.org/10.3390/aerospace9110735
APA StyleCostanza, G., Delle Monache, G. O., Tata, M. E., & Filosi, S. (2022). Development of SMA Spring Linear Actuator for an Autonomous Lock and Release Mechanism: Application for the Gravity-Assisted Pointing System in Moon to Earth Alignment of Directional Devices. Aerospace, 9(11), 735. https://doi.org/10.3390/aerospace9110735