Low-Cost Raspberry-Pi-Based UAS Detection and Classification System Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Detection and Classification Model Creation
2.2. Early Warning Implementation
3. Discussion
3.1. Model Training and Validation
3.2. Early Warning Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Himanshu, J.; Mutreja, S. Small Drones Market Size, Share, Growth, Analysis, Trends 2030. Allied Market Research. February 2022. Available online: https://www.alliedmarketresearch.com/small-drones-market (accessed on 27 July 2022).
- Dilanian, K.; De Luce, D.; Kube, C. Biden admin will provide Ukraine with killer drones called Switchblades. NBC News. 15 March 2022. Available online: https://www.nbcnews.com/politics/national-security/ukraine-asks-biden-admin-armed-drones-jamming-gear-surface-air-missile-rcna20197 (accessed on 27 July 2022).
- Cranny-Evans, S. As Small Drones Shape How We Fight, is the British Army Ready to Face Them? RUSI. 21 July 2022. Available online: https://www.rusi.org/explore-our-research/publications/commentary/small-drones-shape-how-we-fight-british-army-ready-face-them (accessed on 27 July 2022).
- Shackle, S. The mystery of the Gatwick drone. The Gaurdian. 2020. Available online: https://www.theguardian.com/uk-news/2020/dec/01/the-mystery-of-the-gatwick-drone (accessed on 23 June 2021).
- Gilmer, E.D.C. Airport Incident Exposes Gaps in Counter-Drone Authorities. Bloomberg Government. 22 July 2022. Available online: https://about.bgov.com/news/d-c-airport-incident-exposes-gaps-in-counter-drone-authorities/ (accessed on 27 July 2022).
- BBC News. Airport disruption after drone sightings near Download Festival. BBC News. 10 June 2022. Available online: https://www.bbc.co.uk/news/uk-england-leicestershire-61763290/ (accessed on 27 July 2022).
- McKenzie, K. US Army General: Small Drones Biggest Threat Since IEDs. The Defense Post. 10 February 2021. Available online: https://www.thedefensepost.com/2021/02/10/small-drones-threat-us-general/ (accessed on 23 June 2021).
- Zhang, Z.; Zeng, C.; Dhameliya, M.; Chowdhury, S.; Rai, R. Deep learning based multi-modal sensing for tracking and state extraction of small quadcopters. arXiv 2020, arXiv:2012.04794v1. [Google Scholar]
- Shi, X.; Yang, C.; Xie, W.; Liang, C.; Shi, Z.; Chen, J. Anti-Drone System with Multiple Surveillance Technologies: Architecture, Implementation, and Challenges. IEEE Commun. Mag. 2018, 56, 68–74. [Google Scholar] [CrossRef]
- De Cubber, G.; Shalom, R.; Coluccia, A.; Borcan, O.; Chamrád, R.; Radulescu, T.; Izquierdo, E.; Gagov, Z. The SafeShore system for the detection of threat agents in a maritime border environment. IARP Workshop on Risky Interventions and Environmental Surveillance. 18–19 May 2017. [CrossRef]
- Sherpa, P.; Aladdin. Aladdin Project Sherpa Workshop. Horizon 2020 European Union. 12 April 2019, pp. 1–38. Available online: https://aladdin2020.eu/wp-content/uploads/2019/06/ALADDIN_SHERPA_WS_12April2019_VO1-1.pdf (accessed on 27 July 2022).
- Medina, E.; Advisor, M.; Paradells, J. Drone Detection and Inhibition. Master’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, February 2020. [Google Scholar]
- Khoi, T.Q.; Quang, N.A.; Hieu, N.K. Object detection for drones on Raspberry Pi potentials and challenges. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1109, 012033. [Google Scholar] [CrossRef]
- Ozkan, Z. Raspberry Pi Object Detection and Recognition of Unmanned Aerial Vehicles Using Raspberry Pi Platform. In Proceedings of the 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 21–23 October 2021; pp. 467–472. [Google Scholar]
- Price, J.; Li, Y.; Shamaileh, K.A.; Niyaz, Q.; Kaabouch, N.; Devabhaktuni, V. Real-time Classification of Jamming Attacks against UAVs via on-board Software-defined Radio and Machine Learning-based Receiver Module. In Proceedings of the IEEE International Conference on Electro Information Technology, Mankato, MN, USA, 19–21 May 2022; pp. 252–256. [Google Scholar] [CrossRef]
- Nie, W.; Han, Z.C.; Li, Y.; He, W.; Xie, L.B.; Yang, X.L.; Zhou, M. UAV Detection and Localization Based on Multi-Dimensional Signal Features. IEEE Sens. J. 2022, 22, 5150–5162. [Google Scholar] [CrossRef]
- Basak, S.; Rajendran, S.; Pollin, S.; Scheers, B. Drone classification from RF fingerprints using deep residual nets. In Proceedings of the 2021 International Conference on COMmunication Systems and NETworkS, COMSNETS 2021, Bangalore, India, 5–9 January 2021; pp. 548–555. [Google Scholar] [CrossRef]
- Ezuma, M.; Erden, F.; Anjinappa, C.K.; Ozdemir, O.; Guvenc, I. Detection and classification of UAVs using RF fingerprints in the presence of interference. arXiv 2019, arXiv:1909.05429v1. [Google Scholar] [CrossRef]
- Xu, C.; Chen, B.; Liu, Y.; He, F.; Song, H. RF Fingerprint Measurement for Detecting Multiple Amateur Drones Based on STFT and Feature Reduction. In Proceedings of the Integrated Communications, Navigation and Surveillance Conference, ICNS, Herndon, VA, USA, 8–10 September 2020. [Google Scholar] [CrossRef]
- Nemer, I.; Sheltami, T.; Ahmad, I.; Yasar, A.U.H.; Abdeen, M.A. Rf-based UAV detection and identification using hierarchical learning approach. Sensors 2021, 21, 1947. [Google Scholar] [CrossRef] [PubMed]
- Flak, P. Drone Detection Sensor with Continuous 2.4 GHz ISM Band Coverage Based on Cost-Effective SDR Platform. IEEE Access 2021, 9, 114574–114586. [Google Scholar] [CrossRef]
- Swinney, C.J. RF Detection and Classification of Unmanned Aerial Vehicles in Environments with Wireless Interference. In Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 1494–1498. [Google Scholar] [CrossRef]
- Swinney, C.J.; Woods, J.C. The Effect of Real-World Interference on CNN Feature Extraction and Machine Learning Classification of Unmanned Aerial Systems. Aerospace 2021, 8, 179. [Google Scholar] [CrossRef]
- Swinney, C.J.; Woods, J.C. DroneDetect Dataset: A Radio Frequency dataset of Unmanned Aerial System (UAS) Signals for Machine Learning Detection and Classification. IEEE DataPort. 2021. Available online: https://ieee-dataport.org/keywords/drone-detection (accessed on 14 June 2021).
- DJI. Inspire 2—Product Information— DJI. 2022. Available online: https://www.dji.com/cn/inspire-2/info (accessed on 27 July 2022).
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Swinney, C.J.; Woods, J.C. Unmanned Aerial Vehicle Operating Mode Classification Using Deep Residual Learning Feature Extraction. Aerospace 2021, 8, 79. [Google Scholar] [CrossRef]
- Raspberry Pi. Buy a Raspberry Pi 4 Model B—Raspberry Pi. 2022. Available online: https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ (accessed on 27 July 2022).
- Nuand. bladeRF 2.0. Available online: https://www.nuand.com/bladerf-2-0-micro/ (accessed on 26 April 2021).
- Tindie. Ultra-WideBand Vivaldi Antenna 800 MHz to 6 GHz+ from Hex and Flex.Tindie. Available online: https://www.tindie.com/products/hexandflex/ultra-wideband-vivaldi-antenna-800mhz-to-6ghz/ (accessed on 23 June 2021).
- Nassar, I.T.; Weller, T.M. A Novel Method for Improving Antipodal Vivaldi Antenna Performance. IEEE Trans. Antennas Propag. 2015, 63, 3321–3324. [Google Scholar] [CrossRef]
- De Oliveira, A.M.; Perotoni, M.B.; Kofuji, S.T.; Justo, J.F. A palm tree Antipodal Vivaldi Antenna with exponential slot edge for improved radiation pattern. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1334–1337. [Google Scholar] [CrossRef]
Platform | Datalink | EIRP (2.4 GHz) | Freq Range (2.4 GHz) |
---|---|---|---|
Mavic 2 Air S | OcuSync 3.0 | 20 dBm | 2.400–2.4835 GHz |
Parrot Disco | Wi-Fi | 19 dBm | 2.400–2.4835 GHz |
Inspire 2 Pro | Lightbridge 2.0 | 17 dBm | 2.400–2.483 GHz |
Mavic Pro 2 | OcuSync 2.0 | 20 dBm | 2.400–2.4835 GHz |
Mavic Mini | Wi-Fi | 19 dBm | 2.400–2.4835 GHz |
Classifier | Image | Metric | Detection | Type Classification |
---|---|---|---|---|
LR | PSD | Acc | 100 (± 0.0) | 99.3 (±0.6) |
PSD | F1 | 100 (± 0.0) | 99.2 (±0.6) | |
Spec | Acc | 99.6 (±0.3) | 98.4 (±0.6) | |
Spec | F1 | 99.6 (±0.3) | 98.4 (±0.6) | |
kNN | PSD | Acc | 100.0 (±0.0) | 97.0 (±0.6) |
PSD | F1 | 100.0 (±0.0) | 97.0 (±0.6) | |
Spec | Acc | 98.2 (±0.5) | 95.7 (±1.5) | |
Spec | F1 | 98.2 (±2.6) | 95.6 (±1.5) |
Classifier | Image | Metric | Detection | Type Classification |
---|---|---|---|---|
LR | PSD | Acc | 100 | 100 |
PSD | F1 | 100 | 100 | |
Spec | Acc | 98.6 | 98.5 | |
Spec | F1 | 98.6 | 98.5 | |
kNN | PSD | Acc | 99.3 | 97.7 |
PSD | F1 | 99.3 | 97.7 | |
Spec | Acc | 93.3 | 92.9 | |
Spec | F1 | 93.4 | 92.9 |
Classifier | Image | UAS Flying | Model Prediction | Prediction (%) | Time (s) |
---|---|---|---|---|---|
LR | PSD | No UAS | No UAS | 100 | 28 |
PSD | Mini | UAS Detected | 100 | 26 | |
PSD | Inspire | UAS Detected | 100 | 15 | |
Spec | No UAS | No UAS | 100 | 22 | |
Spec | Mini | UAS Detected | 100 | 23 | |
Spec | Inspire | UAS Detected | 100 | 19 | |
kNN | PSD | No UAS | No UAS | 100 | 24 |
PSD | Mini | UAS Detected | 100 | 24 | |
PSD | Inspire | UAS Detected | 100 | 20 | |
Spec | No UAS | No UAS | 100 | 24 | |
Spec | Mini | UAS Detected | 100 | 26 | |
Spec | Inspire | UAS Detected | 100 | 20 |
Classifier | Image | UAS Flying | Model Prediction | Prediction (%) | Time (s) |
---|---|---|---|---|---|
LR | PSD | No UAS | No UAS | 100 | 22 |
PSD | Mini | Mini | 100 | 27 | |
PSD | Inspire | Inspire | 50 | 18 | |
Spec | No UAS | No UAS | 100 | 22 | |
Spec | Mini | Mini | 100 | 24 | |
Spec | Inspire | - | - | - | |
kNN | PSD | No UAS | No UAS | 100 | 26 |
PSD | Mini | Mini | 100 | 27 | |
PSD | Inspire | Inspire | 66.7 | 23 | |
Spec | No UAS | No UAS | 100 | 27 | |
Spec | Mini | Mini | 100 | 28 | |
Spec | Inspire | Air 2 S | 60 | 21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swinney, C.J.; Woods, J.C. Low-Cost Raspberry-Pi-Based UAS Detection and Classification System Using Machine Learning. Aerospace 2022, 9, 738. https://doi.org/10.3390/aerospace9120738
Swinney CJ, Woods JC. Low-Cost Raspberry-Pi-Based UAS Detection and Classification System Using Machine Learning. Aerospace. 2022; 9(12):738. https://doi.org/10.3390/aerospace9120738
Chicago/Turabian StyleSwinney, Carolyn J., and John C. Woods. 2022. "Low-Cost Raspberry-Pi-Based UAS Detection and Classification System Using Machine Learning" Aerospace 9, no. 12: 738. https://doi.org/10.3390/aerospace9120738
APA StyleSwinney, C. J., & Woods, J. C. (2022). Low-Cost Raspberry-Pi-Based UAS Detection and Classification System Using Machine Learning. Aerospace, 9(12), 738. https://doi.org/10.3390/aerospace9120738