Hybrid Electric Powered Multi-Lobed Airship for Sustainable Aviation
Abstract
:1. Introduction and Background
2. Design Methodology
2.1. Problem Formulation
2.2. Drag Estimation
2.3. Mass Estimation
3. Results and Discussions
3.1. Effect of Hybridization on Range
3.2. Case Study 1: Conventional Multi-Lobed Airship
3.3. Case Study 2: Hybrid-Electric-Powered Multi-Lobed Airship
3.4. Case Study 3: Hybrid-Electric-Powered Multi-Lobed Airship with Solar Array
4. Conclusions
- Aerodynamic efficiency and battery-specific power have a significant impact on the performance of an airship designed for low-altitude cargo transportation.
- Conventional hybrid airships can be turned into fully electric at the expense of payload weight reduction by ∼50%. The payload weight capability can be significantly improved with better battery technology in the future. Fuel cell technology can be another potential solution for electric-powered airships.
- To understand the conflicts between the degree of hybridization and sizing of the multi-lobed airship, a single-objective optimization problem may not be sufficient to derive solid conclusions.
- Multi-objective multi-disciplinary design optimization problem must be formulated to obtain design numbers that provide more insight into the complexities involved in achieving fully electric hybrid airships.
- The proposed methodology is very flexible in incorporating the multiple disciplines at various stages of the design process and efficient in terms of computational time to derive a better understanding of the impact of hybrid propulsion technology on the initial sizing of hybrid airships.
- There is a scope for further improvement to the design process incorporating hybrid propulsion technology for future electric hybrid airships that has been laid out in this study.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madhwal, Y.; Avdeeva, Z. Planning in Aircraft Industry based on prediction of Air Traffic. Procedia Comput. Sci. 2017, 122, 1047–1054. [Google Scholar] [CrossRef]
- ICAO. Environmental Report 2010-Aviation and Climate Change; ICAO: Monteal, QC, Canada, 2010. [Google Scholar]
- Friedrich, C.; Robertson, P. Hybrid-electric propulsion for automotive and aviation applications. Ceas Aeronaut. J. 2015, 6, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.J.; Lukachko, S.P.; Waitz, I.A.; Schafer, A. Historical and future trends in aircraft performance, cost, and emissions. Annu. Rev. Energy Environ. 2001, 26, 167–200. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.Z.; Hou, Z.X.; Guo, Z.; Chen, X.Q. Reviews of methods to extract and store energy for solar-powered aircraft. Renew. Sustain. Energy Rev. 2015, 44, 96–108. [Google Scholar] [CrossRef]
- Berry, P. The Sunriser-A design study in solar powered flight. In Proceedings of the 2000 World Aviation Conference, San Diego, CA, USA, 10–12 October 2000; p. 5507. [Google Scholar]
- Velev, O. Regenerative fuel cell system for an unmanned solar powered aircraft. In Proceedings of the 35th Intersociety Energy Conversion Engineering Conference and Exhibit, Las Vegas, NV, USA, 24–28 July 2000; p. 2873. [Google Scholar]
- Noth, A.; Bouabdallah, S.; Michaud, S.; Siegwart, R.; Engel, W. Sky-Sailor Design of an autonomous solar powered martian airplane. In Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA 2004) ESTEC, Noordwijk, The Netherlands, 2–4 November 2004; European Space Research and Technology Centre (ESTEC): Noordwijk, The Netherlands, 2004; p. F-03. [Google Scholar]
- Cestino, E. Design of solar high altitude long endurance aircraft for multi payload & operations. Aerosp. Sci. Technol. 2006, 10, 541–550. [Google Scholar]
- Hartney, C. Conceptual design of a model solar-powered unmanned aerial vehicle. In Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012; p. 134. [Google Scholar]
- Shiau, J.K.; Ma, D.M.; Chiu, C.W.; Shie, J.R. Optimal sizing and cruise speed determination for a solar-powered airplane. J. Aircr. 2010, 47, 622–629. [Google Scholar] [CrossRef] [Green Version]
- Schoeberl, E. From Sunrise to Solar-Impulse 34 Years of Solar Powered Flight. Tech. Soar. 2008, 32, 115–121. [Google Scholar]
- Hari, T.K.; Yaakob, Z.; Binitha, N.N. Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renew. Sustain. Energy Rev. 2015, 42, 1234–1244. [Google Scholar] [CrossRef]
- Dahal, K.; Brynolf, S.; Xisto, C.; Hansson, J.; Grahn, M.; Grönstedt, T.; Lehtveer, M. Techno-economic review of alternative fuels and propulsion systems for the aviation sector. Renew. Sustain. Energy Rev. 2021, 151, 111564. [Google Scholar] [CrossRef]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Baroutaji, A.; Wilberforce, T.; Ramadan, M.; Olabi, A.G. Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors. Renew. Sustain. Energy Rev. 2019, 106, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Barbir, F.; Molter, T.; Dalton, L. Efficiency and weight trade-off analysis of regenerative fuel cells as energy storage for aerospace applications. Int. J. Hydrog. Energy 2005, 30, 351–357. [Google Scholar] [CrossRef]
- Noll, T.E.; Ishmael, S.D.; Henwood, B.; Perez-Davis, M.E.; Tiffany, G.C.; Madura, J.; Gaier, M.; Brown, J.M.; Wierzbanowski, T. Technical Findings, Lessons Learned, and Recommendations Resulting from the Helios Prototype Vehicle Mishap; Technical Report; National Aeronautics and Space Admin Langley Research Center: Hampton, VA, USA, 2007. [Google Scholar]
- Savoye, F.; Venet, P.; Millet, M.; Groot, J. Impact of periodic current pulses on Li-ion battery performance. IEEE Trans. Ind. Electron. 2011, 59, 3481–3488. [Google Scholar] [CrossRef]
- García, P.; Torreglosa, J.P.; Fernández, L.M.; Jurado, F. Viability study of a FC-battery-SC tramway controlled by equivalent consumption minimization strategy. Int. J. Hydrogen Energy 2012, 37, 9368–9382. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, D.C.; Lee, J.J.; Kim, C.W. Optimization for maximum specific energy density of a lithium-ion battery using progressive quadratic response surface method and design of experiments. Sci. Rep. 2020, 10, 15586. [Google Scholar] [CrossRef] [PubMed]
- Janovec, M.; Čerňan, J.; Škultéty, F.; Novák, A. Design of Batteries for a Hybrid Propulsion System of a Training Aircraft. Energies 2021, 15, 49. [Google Scholar] [CrossRef]
- Yeung, T.H. Optimal Battery Weight Fraction for Serial Hybrid Propulsion System in Aircraft Design. Ph.D. Dissertation, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA, 2019. [Google Scholar]
- Chang, C.k. Factors affecting capacity design of lithium-ion stationary batteries. Batteries 2019, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Voskuijl, M.; Van Bogaert, J.; Rao, A.G. Analysis and design of hybrid electric regional turboprop aircraft. Ceas Aeronaut. J. 2018, 9, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Gesell, H.; Wolters, F.; Plohr, M. System analysis of turbo-electric and hybrid-electric propulsion systems on a regional aircraft. Aeronaut. J. 2019, 123, 1602–1617. [Google Scholar] [CrossRef]
- Ang, A.; Gangoli Rao, A.; Kanakis, T.; Lammen, W. Performance analysis of an electrically assisted propulsion system for a short-range civil aircraft. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 1490–1502. [Google Scholar] [CrossRef] [Green Version]
- Karadotcheva, E.; Nguyen, S.N.; Greenhalgh, E.S.; Shaffer, M.S.; Kucernak, A.R.; Linde, P. Structural Power Performance Targets for Future Electric Aircraft. Energies 2021, 14, 6006. [Google Scholar] [CrossRef]
- Pornet, C.; Isikveren, A.T. Conceptual design of hybrid-electric transport aircraft. Prog. Aerosp. Sci. 2015, 79, 114–135. [Google Scholar] [CrossRef]
- De Vries, R.; Vos, R. Aerodynamic Performance Benefits of Over-the-Wing Distributed Propulsion for Hybrid-Electric Transport Aircraft. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 0128. [Google Scholar]
- Jansen, R.; Kiris, C.C.; Chau, T.; Machado, L.M.; Duensing, J.C.; Mirhashemi, A.; Chapman, J.; French, B.D.; Miller, L.; Litt, J.S.; et al. Subsonic Single Aft Engine (SUSAN) Transport Aircraft Concept and Trade Space Exploration. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 2179. [Google Scholar]
- Kang, L.; Sun, Y.; Smith, H. MDAO method and optimum designs of hybrid-electric civil airliners. J. Aerosp. Eng. 2022, 35, 04022032. [Google Scholar] [CrossRef]
- Finger, D.F.; Braun, C.; Bil, C. Case studies in initial sizing for hybrid-electric general aviation aircraft. In Proceedings of the 2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Cincinnati, OH, USA, 12–14 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–22. [Google Scholar]
- Finger, D.F.; Bil, C.; Braun, C. Initial sizing methodology for hybrid-electric general aviation aircraft. J. Aircr. 2020, 57, 245–255. [Google Scholar] [CrossRef]
- Finger, D.F.; Braun, C.; Bil, C. Impact of battery performance on the initial sizing of hybrid-electric general aviation aircraft. J. Aerosp. Eng. 2020, 33, 04020007. [Google Scholar] [CrossRef]
- Nasoulis, C.; Gkoutzamanis, V.; Kalfas, A. Multidisciplinary conceptual design for a hybrid-electric commuter aircraft. Aeronaut. J. 2022, 126, 1–23. [Google Scholar] [CrossRef]
- Farajollahi, A.H.; Rostami, M.; Marefati, M. A hybrid-electric propulsion system for an unmanned aerial vehicle based on proton exchange membrane fuel cell, battery, and electric motor. Energy Sources Part Recover. Util. Environ. Eff. 2022, 44, 934–950. [Google Scholar] [CrossRef]
- Jimenez, D.; Valencia, E.; Herrera, A.; Cando, E.; Pozo, M. Evaluation of Series and Parallel Hybrid Propulsion Systems for UAVs Implementing Distributed Propulsion Architectures. Aerospace 2022, 9, 63. [Google Scholar] [CrossRef]
- Centracchio, F.; Rossetti, M.; Iemma, U. Approach to the weight estimation in the conceptual design of hybrid-electric-powered unconventional regional aircraft. J. Adv. Transp. 2018, 2018, 6320197. [Google Scholar] [CrossRef] [Green Version]
- Hepperle, M. Electric flight-potential and limitations. In Proceedings of the Energy Efficient Technologies and Concepts of Operation, Lisbon, Portugal, 22–24 October 2012. [Google Scholar]
- Rostek, P. Hybrid Electric Propulsion—A European Initiative for Technology Development. In Proceedings of the Electric & Hybrid Aerospace Technology Symposium, Bremen, Germany, 17–18 November 2015. [Google Scholar]
- Zolin, A.; Didkovsky, A. Development of the transport airship for cargo delivery to the Vostochny Cosmodrome. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2171, p. 120004. [Google Scholar]
- Hunt, J.D.; Byers, E.; Balogun, A.L.; Leal Filho, W.; Colling, A.V.; Nascimento, A.; Wada, Y. Using the jet stream for sustainable airship and balloon transportation of cargo and hydrogen. Energy Convers. Manag. X 2019, 3, 100016. [Google Scholar] [CrossRef]
- Manikandan, M.; Vaidya, E.; Pant, R.S. Design and analysis of hybrid electric multi-lobed airship for cargo transportation. Sustain. Energy Technol. Assess. 2022, 51, 101892. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Jiang, Y.; Du, H.; Zhu, W.; Lv, M. Stratospheric airship endurance strategy analysis based on energy optimization. Aerosp. Sci. Technol. 2020, 100, 105794. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, W.; Li, J.; Zhang, L. Improvement of endurance performance for high-altitude solar-powered airships: A review. Acta Astronaut. 2020, 167, 245–259. [Google Scholar] [CrossRef]
- Manikandan, M.; Pant, R.S. Multidisciplinary design approach for solar-powered tri-lobed HALESA. Energy Convers. Manag. 2021, 245, 114616. [Google Scholar] [CrossRef]
- Buerge, B. The suitability of hybrid vs. conventional airships for persistent surveillance missions. In Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2010; p. 1014. [Google Scholar]
- Shah, H.N.M.; Ab Rashid, M.Z.; Kamis, Z.; Aras, M.S.M.; Ali, N.M.; Wasbari, F.; Bakar, M.N.F.B.A. Design and develop an autonomous UAV airship for indoor surveillance and monitoring applications. Int. J. Inform. Vis. 2018, 2, 1–7. [Google Scholar]
- Ganesh, M. Design of airship for aerial surveillance and communication using knowledge based engineering. Int. J. Mech. Prod. Eng. Res. Dev. 2018, 8, 17–26. [Google Scholar]
- Choudhary, N.; Khaitan nee Gupta, V. High Altitude Aeronautical Platform for VOIP: Dependability Analysis. Wirel. Pers. Commun. 2022, 125, 2277–2303. [Google Scholar] [CrossRef]
- Carichner, G.E.; Nicolai, L.M. Fundamentals of Aircraft and Airship Design, Volume 2–Airship Design and Case Studies; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2013. [Google Scholar]
- Carichner, G.; Nicolai, L.M. Hybrids... the Airship Messiah? In Proceedings of the AIAA Lighter-Than-Air Systems Technology (LTA) Conference, Daytona Beach, FL, USA, 25–28 March 2013; p. 1317. [Google Scholar]
- Zhang, L.; Lv, M.; Meng, J.; Du, H. Optimization of solar-powered hybrid airship conceptual design. Aerosp. Sci. Technol. 2017, 65, 54–61. [Google Scholar] [CrossRef]
- Zhang, L.; Lv, M.; Meng, J.; Du, H. Conceptual design and analysis of hybrid airships with renewable energy. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2018, 232, 2144–2159. [Google Scholar] [CrossRef]
- Zhang, L.; Lv, M.; Zhu, W.; Du, H.; Meng, J.; Li, J. Mission-based multidisciplinary optimization of solar-powered hybrid airship. Energy Convers. Manag. 2019, 185, 44–54. [Google Scholar] [CrossRef]
- Parthiban, P.; Priyadarshi, P. Hybrid Airship Fuel Optimization for Various Cruise Modes. J. Aircr. 2022, 59, 1–13. [Google Scholar] [CrossRef]
- Manikandan, M.; Pant, R.S. Research and advancements in hybrid airships—A review. Prog. Aerosp. Sci. 2021, 127, 100741. [Google Scholar]
- Fazelpour, F.; Vafaeipour, M.; Rahbari, O.; Shirmohammadi, R. Considerable parameters of using PV cells for solar-powered aircrafts. Renew. Sustain. Energy Rev. 2013, 22, 81–91. [Google Scholar] [CrossRef]
- Chen, W.; Bernal, L. Design and performance of low Reynolds number airfoils for solar-powered flight. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 7–10 January 2008; p. 316. [Google Scholar]
- Cinar, G.; Mavris, D.N.; Emeneth, M.; Schneegans, A.; Riediger, C.; Fefermann, Y.; Isikveren, A. Sizing, integration and performance evaluation of hybrid electric propulsion subsystem architectures. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017; p. 1183. [Google Scholar]
- Bowman, C.L.; Felder, J.L.; Marien, T.V. Turbo-and hybrid-electrified aircraft propulsion concepts for commercial transport. In Proceedings of the 2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Cincinnati, OH, USA, 12–14 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–8. [Google Scholar]
- Cinar, G.; Garcia, E.; Mavris, D.N. A framework for electrified propulsion architecture and operation analysis. Aircr. Eng. Aerosp. Technol. 2020, 92. [Google Scholar] [CrossRef]
- Bayindir, K.Ç.; Gözüküçük, M.A.; Teke, A. A comprehensive overview of hybrid electric vehicle: Powertrain configurations, powertrain control techniques and electronic control units. Energy Convers. Manag. 2011, 52, 1305–1313. [Google Scholar] [CrossRef]
- Hung, J.Y.; Gonzalez, L.F. On parallel hybrid-electric propulsion system for unmanned aerial vehicles. Prog. Aerosp. Sci. 2012, 51, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Bravo, G.M.; Praliyev, N.; Veress, Á. Performance analysis of hybrid electric and distributed propulsion system applied on a light aircraft. Energy 2021, 214, 118823. [Google Scholar] [CrossRef]
- Thomson, R.; Sachdeva, N.; Nazukin, M.; Martinez, N. Aircraft Electrical Propulsion–The Next Chapter of Aviation? Think Act 2017, 1–32. [Google Scholar]
- Carrión, M.; Steijl, R.; Barakos, G.; Stewart, D. Analysis of hybrid air vehicles using computational fluid dynamics. J. Aircr. 2016, 53, 1001–1012. [Google Scholar] [CrossRef] [Green Version]
- Gertler, M. Resistance Experiments on a Systematic Series of Streamlined Bodies of Revolution: For Application to the Design of High-Speed Submarines; Navy Department, David W. Taylor Model Basin: Potomac, MD, USA, 1950. [Google Scholar]
- Landweber, L.; Gertler, M. Mathematical Formulation of Bodies of Revolution, The David W. In Taylor Model Basin Report; US Navy Department: Monterey, CA, USA, 1950; Volume 719. [Google Scholar]
- Ma, D.; Li, G.; Yang, M.; Wang, S.; Zhang, L. Shape optimization and experimental research of near space airship. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 3589–3602. [Google Scholar] [CrossRef]
- Liang, H.; Zhu, M.; Guo, X.; Zheng, Z. Conceptual design optimization of high altitude airship in concurrent subspace optimization. In Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012; p. 1180. [Google Scholar]
- Ram, C.V.; Pant, R.S. Multidisciplinary shape optimization of aerostat envelopes. J. Aircr. 2010, 47, 1073–1076. [Google Scholar] [CrossRef]
- Liu, P.; Fu, G.y.; Zhu, L.j.; Wang, X.l. Aerodynamic characteristics of airship Zhiyuan-1. J. Shanghai Jiaotong Univ. (Sci.) 2013, 18, 679–687. [Google Scholar] [CrossRef]
- Wang, Q.B.; Chen, J.A.; Fu, G.Y.; Duan, D.P. An approach for shape optimization of stratosphere airships based on multidisciplinary design optimization. J. Zhejiang-Univ.-Sci. A 2009, 10, 1609–1616. [Google Scholar] [CrossRef]
- Murdock, S. JDA Aerojournal-Rolls-Royce Acquires Siemens’ Electrical Engine Expertise. Rolls-Royce and Siemens. 2019. Available online: http://jdasolutions.aero/blog/rolls-royce-bold-acquisition-epropulsion-expertise (accessed on 15 April 2022).
- Manikandan, M.; Pant, R.S. A comparative study of conventional and tri-lobed stratospheric airships. Aeronaut. J. 2021, 125, 1434–1466. [Google Scholar] [CrossRef]
- Hoerner, S.F. Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance; Hoerner Fluid Dynamics: Midland Park, NJ, USA, 1965; pp. 16–35. [Google Scholar]
- Carrion, M.; Biava, M.; Steijl, R.; Barakos, G.N.; Stewart, D. CFD Studies of Hybrid Air Vehicles. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016; p. 0059. [Google Scholar]
- Carrión, M.; Biava, M.; Barakos, G.; Stewart, D. Study of hybrid air vehicle stability using computational fluid dynamics. J. Aircr. 2017, 54, 1328–1339. [Google Scholar] [CrossRef] [Green Version]
- Carri, M.; Biava, M.; Steijl, R.; Barakos, G.; Stewart, D. Computational fluid dynamics challenges for hybrid air vehicle applications. Prog. Flight Phys. 2017, 9, 43–80. [Google Scholar]
- Meng, J.; Li, M.; Zhang, L.; Lv, M.; Liu, L. Aerodynamic performance analysis of hybrid air vehicles with large Reynolds number. In Proceedings of the 2019 IEEE International Conference on Unmanned Systems (ICUS), Beijing, China, 17–19 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 403–409. [Google Scholar]
- Pande, D.; Verstraete, D. Impact of solar cell characteristics and operating conditions on the sizing of a solar powered nonrigid airship. Aerosp. Sci. Technol. 2018, 72, 353–363. [Google Scholar] [CrossRef]
- Anderson, J.D. Aircraft Performance and Design; WCB/McGraw-Hill: Boston, MA, USA, 1999; Volume 1. [Google Scholar]
- Nicolai, L.M.; Carichner, G.E. Fundamentals of Aircraft and Airship Design, Volume 1–Aircraft Design; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2010. [Google Scholar]
- Raymer, D. Aircraft Design: A Conceptual Approach; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2012. [Google Scholar]
- Sadraey, M.H. Aircraft Design: A Systems Engineering Approach; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Verma, A.R.; Sagar, K.K.; Priyadarshi, P. Optimum buoyant and aerodynamic lift for a lifting-body hybrid airship. J. Aircr. 2014, 51, 1345–1350. [Google Scholar] [CrossRef]
- Brelje, B. Deriving the Modified Breguet Range Equation for a Hybrid-Turboelectric Aircraft. 2017. Available online: https://brelje.net/blog/deriving-modified-breguet-range-equation-hybrid-turboelectric-aircraft (accessed on 20 May 2022).
Sr. No. | Symbol | Description | Value |
---|---|---|---|
1 | m | Point of maximum diameter | 0.500 |
2 | Nose radius | 0.500 | |
3 | Tail radius | 0.500 | |
4 | Prismatic coefficient | 0.667 | |
5 | L/D | Fineness ratio | 5.000 |
Variable | Symbol | Value |
---|---|---|
Airship length (m) | 89 | |
Airship width (m) | 28.44 | |
Envelope surface area (m2) | 6053 | |
Envelope volume (m3) | 27,598 | |
Airship mass (kg) | 21184 | |
Drag coefficient | 0.0451 | |
Buoyant lift (N) | 168,728 | |
Fuel weight (N) | 1559 |
Variable | Symbol | Modified | Optimized | Difference (%) |
---|---|---|---|---|
Airship length (m) | L | 88.88 | 99.20 | −12 |
Airship width (m) | W | 28.44 | 31.74 | −12 |
Envelope surface area (m2) | 6044 | 7529 | −26 | |
Envelope volume (m3) | 27,647 | 38,440 | −39 | |
Airship mass (kg) | 25,814 | 29,312 | −14 | |
Battery mass (kg) | 4269 | 5048 | −18 | |
Array mass (kg) | 633 | 789 | −25 | |
Payload mass (kg) | 5098 | 10,000 | −96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murugaiah, M.; Theng, D.F.; Khan, T.; Sebaey, T.A.; Singh, B. Hybrid Electric Powered Multi-Lobed Airship for Sustainable Aviation. Aerospace 2022, 9, 769. https://doi.org/10.3390/aerospace9120769
Murugaiah M, Theng DF, Khan T, Sebaey TA, Singh B. Hybrid Electric Powered Multi-Lobed Airship for Sustainable Aviation. Aerospace. 2022; 9(12):769. https://doi.org/10.3390/aerospace9120769
Chicago/Turabian StyleMurugaiah, Manikandan, Darpan F. Theng, Tabrej Khan, Tamer A. Sebaey, and Balbir Singh. 2022. "Hybrid Electric Powered Multi-Lobed Airship for Sustainable Aviation" Aerospace 9, no. 12: 769. https://doi.org/10.3390/aerospace9120769
APA StyleMurugaiah, M., Theng, D. F., Khan, T., Sebaey, T. A., & Singh, B. (2022). Hybrid Electric Powered Multi-Lobed Airship for Sustainable Aviation. Aerospace, 9(12), 769. https://doi.org/10.3390/aerospace9120769