Assessing the Sustainability of Liquid Hydrogen for Future Hypersonic Aerospace Flight
Abstract
:1. Introduction
2. Materials and Methods
2.1. Propulsion Systems
2.2. Kerosene
2.3. Application of LH2
3. Results and Discussion
3.1. Fuel Efficiency with Regards to Emissions
Fuel | Average Composition | Density (kg/m3) | Lower Heating Value, hpr (kJ/kg) | Flashpoint (°C) | kgCO2 Emissions per kg Fuel Burnt | kgSO2 Emissions per kg Fuel Burnt |
---|---|---|---|---|---|---|
JP-7 | C12H25 | 779–806 | 43,500 | 60 | 3.15 | 0.00020 |
JP-8 | C12H23 | 800 | 43,190 | 38 | 3.19 | 0.00024 |
3.2. Fuel Efficiency with Regards to Engine Efficiency
3.3. Limitations
4. Conclusions
- Table 2 reveals that the combustion emissions of JP-7 and JP-8 are 3.15 and 3.19 kg of CO2, respectively. Based on the predicted LCA emissions of grey, blue, and green hydrogen in 2030 highlighted in Figure 2, and the combustion emissions computed in Table 2, an LCA assessment of LH2 was performed. It revealed that SMR with anaerobically produced biomethane produced 3.3 kg of CO2 per kg of green H2 produced, while SMR with natural gas and CCS at 90% efficiency produced 1.5 kg of CO2 per kg of H2. This confirms that the lifecycle emissions of green hydrogen produce more CO2 compared to kerosene fuel, as indicated in Table 3.
- Hypersonic flight is likely to produce more NOx emissions than super or subsonic vehicles because of the greater temperatures reached in the combustion chamber.
- Scramjet technology remains in its infancy. Extensive performance data on the combustion efficiencies and data on the empirical GHG emissions of hypersonic tests are necessary for future work in order to better quantify the sustainability of hypersonic vehicles using different types of fuel.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cecere, D.; Giacomazzi, E.; Ingenito, A. A review on hydrogen industrial aerospace applications. Int. J. Hydrogen Energy 2014, 39, 10731–10747. [Google Scholar] [CrossRef]
- Cecere, D.; Ingenito, A.; Giacomazzi, E.; Romagnosi, L.; Bruno, C. Hydrogen/air supersonic combustion for future hypersonic vehicles. Int. J. Hydrogen Energy 2011, 36, 11969–11984. [Google Scholar] [CrossRef]
- Rosen, M.A.; Koohi-Fayegh, S. The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems. Energy Ecol. Environ. 2016, 1, 10–29. [Google Scholar] [CrossRef] [Green Version]
- Zohuri, B. Hydrogen Energy; Springer International Publishing: Cham, Germany, 2019. [Google Scholar]
- Winter, C. Hydrogen in high-speed air transportation. Int. J. Hydrogen Energy 1990, 15, 579–595. [Google Scholar] [CrossRef]
- Choubey, G.; Pandey, K.M. Numerical Studies on the Performance of Scramjet Combustor with Alternating Wedge-Shaped Strut Injector. Int. J. Turbo Jet-Engines 2017, 34, 11–22. [Google Scholar] [CrossRef]
- Choubey, G.; Suneetha, L.; Pandey, K.M. Composite materials used in Scramjet-A Review. Mater. Today: Proc. 2018, 5, 1321–1326. Available online: https://www.sciencedirect.com/science/article/pii/S2214785317324823 (accessed on 29 March 2022). [CrossRef]
- Timnat, Y.M. Recent developments in ramjets, ducted rockets and scramjets. Prog. Aerosp. Sci. 1990, 27, 201–235. [Google Scholar] [CrossRef]
- Choubey, G.; Pandey, K.M.; Maji, A.; Deshmukhya, T.; Debbarma, A. Computational Investigation of Multi-Strut Injection of Hydrogen in a Scramjet Combustor. Mater. Today Proc. 2017, 4, 2608–2614. Available online: https://www.sciencedirect.com/science/article/pii/S2214785317303139 (accessed on 31 March 2022). [CrossRef]
- Genta, G. Private space exploration: A new way for starting a spacefaring society? Acta Astronaut. 2014, 104, 480–486. [Google Scholar] [CrossRef]
- Sziroczak, D.; Smith, H. A review of design issues specific to hypersonic flight vehicles. Prog. Aerosp. Sci. 2016, 84, 1–28. [Google Scholar] [CrossRef]
- He, J.; Liu, Y.; Li, S.; Tang, Y. Minimum-Fuel Ascent of Hypersonic Vehicle considering Control Constraint Using the Improved Pigeon-Inspired Optimization Algorithm. Int. J. Aerosp. Eng. 2020, 2020, e3024607. [Google Scholar] [CrossRef]
- Propellants, H., Jr. 2019. Available online: https://history.nasa.gov/conghand/propelnt.htm1 (accessed on 21 March 2022).
- van Wie, D.; White, M.; Wie, D.; D’alessio, S.; White, M. Hypersonic Airbreathing propulsion. Johns Hopkins APL Technol. Dig. 2005, 26, 430–437. Available online: https://www.jhuapl.edu/Content/techdigest/pdf/V26-N04/26-04-VanWie.pdf (accessed on 27 February 2022).
- Choubey, G.; Devarajan, Y.; Huang, W.; Yan, L.; Babazadeh, H.; Pandey, K. Hydrogen fuel in scramjet engines—A brief review. Int. J. Hydrogen Energy 2020, 45, 16799–16815. [Google Scholar] [CrossRef]
- Nojoumi, H.; Dincer, I.; Naterer, G. Greenhouse gas emissions assessment of hydrogen and kerosene-fueled aircraft propulsion. Int. J. Hydrogen Energy 2009, 34, 1363–1369. [Google Scholar] [CrossRef]
- Satcher, D. Toxicological Profile for Jet Fuels JP-4 and JP-7; Atsdr: Atlanta, GA, USA, 1995.
- Administrator, N. X-15: Extending the Frontiers of Flight. 2015. Available online: https://www.nasa.gov/connect/ebooks/aero_x15_detail.html (accessed on 15 March 2022).
- Wilson, J. NASA—Space Shuttle Main Engines. 2009. Available online: https://www.nasa.gov/returntoflight/system/system_SSME.html#:~:text=After%20the%20solid%20rockets%20are (accessed on 12 March 2022).
- NASA. NASA Facts Space Shuttle Propulsion Systems. 2005. Available online: https://www.nasa.gov/sites/default/files/174533main_shuttle_propulsion.pdf (accessed on 11 March 2022).
- Villanueva, R. Boeing: Successful Design Review and Engine Test Bring Boeing X-51A Closer to Flight. 2008. Available online: https://web.archive.org/web/20080611210339/http://www.boeing.com/news/releases/2007/q2/070601a_nr.html (accessed on 17 March 2022).
- Fusaro, R.; Vercella, V.; Ferretto, D.; Viola, N.; Steelant, J. Economic and environmental sustainability of liquid hydrogen fuel for hypersonic transportation systems. CEAS Space J. 2020, 12, 441–462. [Google Scholar] [CrossRef]
- Smith, Y. NASA—Hypersonic X-43A Takes Flight. 2010. Available online: http://www.nasa.gov/missions/research/x43-main.html (accessed on 19 March 2022).
- Moses, P.L.; Rausch, V.L.; Nguyen, L.T.; Hill, J.R. NASA hypersonic flight demonstrators—Overview, status, and future plans. Acta Astronaut. 2004, 55, 619–630. [Google Scholar] [CrossRef]
- Fureby, C.; Chapuis, M.; Fedina, E.; Karl, S. CFD analysis of the HyShot II scramjet combustor. Proc. Combust. Inst. 2011, 33, 2399–2405. [Google Scholar] [CrossRef]
- Szondy, D. Air-Breathing SABRE Rocket Engine Set to Enter Test Phase. 2019. Available online: https://newatlas.com/air-breathing-sabre-engine-testing/58874/ (accessed on 22 March 2022).
- JAXA. Aeronautical Technology Directorate JAXA Aeronautics Magazine Future into Reality: Inspiring the Aircraft of Tomorrow with the Sky Frontier Program JAXA’s Wind Tunnel Technology—Meeting New Needs—Feature Stories. 2017. Available online: https://www.aero.jaxa.jp/eng/about/publications/magazine/pdf/en_fp_no1718.pdf (accessed on 31 March 2022).
- Sampson, B. Germany’s DLR Starts Hydrogen Fuel Cell Aircraft Propulsion Project. 2021. Available online: https://www.aerospacetestinginternational.com/news/electric-hybrid/germanys-dlr-starts-hydrogen-fuel-cell-aircraft-propulsion-project.html (accessed on 27 March 2022).
- Farokhi, S. Future Propulsion Systems and Energy Sources in Sustainable Aviation; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Oates, G.C. Aircraft Propulsion Systems Technology and Design; American Institute of Aeronautics and Astronautics: Washington, DC, USA, 1989. [Google Scholar]
- Tejwani, G.D.; McVay, G.P.; Langford, L.A.; St. Cyr, W.W. Hydrocarbon Rocket Fuels: Topics by Science.gov. 2006. Available online: https://www.science.gov/topicpages/h/hydrocarbon+rocket+fuels.html (accessed on 31 March 2022).
- Tran, D.T.; Palomino, J.M.; Oliver, S.R.J. Desulfurization of JP-8 jet fuel: Challenges and adsorptive materials. RSC Adv. 2018, 8, 7301–7314. [Google Scholar] [CrossRef] [Green Version]
- Edwards, T. “Kerosene” Fuels for Aerospace Propulsion—Composition and Properties. In Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, 7–10 July 2002. [Google Scholar] [CrossRef] [Green Version]
- Tishkoff, J.; Drummond, J.; Edwards, T.; Nejad, A. Future Directions of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion. 1997. Available online: https://ntrs.nasa.gov/api/citations/20040105532/downloads/20040105532.pdf (accessed on 25 March 2022).
- Masuya, G.; Komuro, T.; Murakami, A.; Shinozaki, N.; Nakamura, A.; Murayamall, M.; Ohwaki, K. Ignition and Combustion Performance of Scramjet Combustors with Fuel Injection Struts. J. Propuls. Power 1995, 11, 301–307. [Google Scholar] [CrossRef]
- Bagg, M. Computational Analysis of Geometric Effects on Strut Induced Mixing in a Scramjet Combustor. 2009. Available online: https://scholar.afit.edu/cgi/viewcontent.cgi?article=3395&context=etd (accessed on 31 March 2022).
- Fusaro, R. Pollutant Emissions Estimation from Subsonic and Hypersonic Civil Aircraft; Politecnico di Torino: Torino, Italy, 2021. [Google Scholar]
- Howe, S.; Kolios, A.; Brennan, F. Environmental life cycle assessment of commercial passenger jet airliners. Transp. Res. Part D Transp. Environ. 2013, 19, 34–41. [Google Scholar] [CrossRef]
- Boucher, O. Seeing through contrails. Nat. Clim. Change 2011, 1, 24–25. [Google Scholar] [CrossRef]
- Hydrogen Council. Hydrogen Decarbonization Pathways a Life-Cycle Assessment. 2021. Available online: https://hydrogencouncil.com/wp-content/uploads/2021/01/Hydrogen-Council-Report_Decarbonization-Pathways_Part-1-Lifecycle-Assessment.pdf (accessed on 30 March 2022).
- Cau, G.; Cocco, D.; Tola, V. Performance assessment of USC power plants integrated with CCS and concentrating solar collectors. Energy Convers. Manag. 2014, 88, 973–984. [Google Scholar] [CrossRef]
- IRENA. A Renewable Energy Roadmap (REmap 2030). 2014. Available online: https://www.irena.org/-/media/Files/IRENA/REmap/Methodology/IRENA_REmap_cost_methodology_2014.pdf?la=en&hash=A60771A19A50742DBD747B69B775BAC8849A4539 (accessed on 21 March 2022).
- Yan, Y.; Thanganadar, D.; Clough, P.T.; Mukherjee, S.; Patchigolla, K.; Manovic, V.; Anthony, E.J. Process simulations of blue hydrogen production by upgraded sorption enhanced steam methane reforming (SE-SMR) processes. Energy Convers. Manag. 2020, 222, 113144. [Google Scholar] [CrossRef]
- Oni, A.O.; Anaya, K.; Giwa, T.; Di Lullo, G.; Kumar, A. Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Convers. Manag. 2022, 254, 115245. [Google Scholar] [CrossRef]
- Ugurlu, A.; Oztuna, S. How liquid hydrogen production methods affect emissions in liquid hydrogen powered vehicles? Int. J. Hydrogen Energy 2020, 45, 35269–35280. [Google Scholar] [CrossRef]
- Cho, S.; Park, J.; Noh, W.; Lee, I.; Moon, I. Developed hydrogen liquefaction process using liquefied natural gas cold energy: Design, energy optimization, and techno-economic feasibility. Int. J. Energy Res. 2021, 45, 14745–14760. [Google Scholar] [CrossRef]
- Anandarajah, G.; McDowall, W.; Ekins, P. Decarbonising road transport with hydrogen and electricity: Long term global technology learning scenarios. Int. J. Hydrogen Energy 2013, 38, 3419–3432. [Google Scholar] [CrossRef]
- Ratnakar, R.R.; Gupta, N.; Zhang, K.; van Doorne, C.; Fesmire, J.; Dindoruk, B.; Balakotaiah, V. Hydrogen supply chain and challenges in large-scale LH2 storage and transportation. Int. J. Hydrogen Energy 2021, 46, 24149–24168. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, K.M.; Sharma, K.K. Recent developments in technological innovations in scramjet engines: A review. Mater. Today Proc. 2021, 45, 6874–6881. [Google Scholar] [CrossRef]
- Marimon, M.; Tutor, M.; Oriol, J.; Dalmases, L. Study of An Air-Breathing Engine for Hypersonic Flight Technical Report. 2013. Available online: https://upcommons.upc.edu/bitstream/handle/2099.1/20295/Technical%20Report.pdf?sequence=1&isAllowed=y (accessed on 31 March 2022).
Vehicle | Flight Date/s (Expected) | Max Powered Speed (Mach) | Max Altitude (km) | Propulsion Systems | Fuel/s (Oxidizer) |
---|---|---|---|---|---|
X-15 | 1967 | 5.89 | 108 | Liquid-propellant rocket | Ethanol, (liquid oxygen (LOx)) |
Space Shuttle | 1977–2011 | 22.16 | 620 | Liquid-propellant rockets, solid-fuel rocket boosters | LH2, Aluminium powder, (LOx, ammonium perchlorate) |
Boeing X-37 | 2010–2020 | 22.71 | 805 | Liquid-propellant rocket booster | Rocket-grade kerosene, LOx |
X-43 | 2004 | 9.90 | 33.5 | Turbojet, solid-fuel rocket booster, scramjet | JP-8, Hydroxyl-terminated polybutadiene (HTPB) solid fuel, (ammonium perchlorate), hydrogen |
Boeing X-51 wave rider | 2010–2013 | 5.18 | 21 | Turbojet, solid-fuel rocket booster, scramjet | JP-8, solid rocket propellant, JP-7 |
2030 Emissions by Type of Hydrogen Production (kg CO2/kg H2) | |
---|---|
Green Hydrogen | 0.3–3.3 |
Blue Hydrogen | 1.2–9.2 |
Grey Hydrogen | 9.2–11.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammad, A.K.; Sumeray, C.; Richmond, M.; Hinshelwood, J.; Ghosh, A. Assessing the Sustainability of Liquid Hydrogen for Future Hypersonic Aerospace Flight. Aerospace 2022, 9, 801. https://doi.org/10.3390/aerospace9120801
Mohammad AK, Sumeray C, Richmond M, Hinshelwood J, Ghosh A. Assessing the Sustainability of Liquid Hydrogen for Future Hypersonic Aerospace Flight. Aerospace. 2022; 9(12):801. https://doi.org/10.3390/aerospace9120801
Chicago/Turabian StyleMohammad, Abdalrahman Khaled, Charles Sumeray, Maximilian Richmond, Justin Hinshelwood, and Aritra Ghosh. 2022. "Assessing the Sustainability of Liquid Hydrogen for Future Hypersonic Aerospace Flight" Aerospace 9, no. 12: 801. https://doi.org/10.3390/aerospace9120801
APA StyleMohammad, A. K., Sumeray, C., Richmond, M., Hinshelwood, J., & Ghosh, A. (2022). Assessing the Sustainability of Liquid Hydrogen for Future Hypersonic Aerospace Flight. Aerospace, 9(12), 801. https://doi.org/10.3390/aerospace9120801