Atomization Characteristics of Special-Design Pneumatic Two-Fluid Nozzles for Helicopter Main Reducers: A Numerical and Experimental Investigation
Abstract
:1. Introduction
2. Methodology
2.1. Governing Equation
2.2. Turbulence Model
2.3. Discrete Phase-Governing Equations
2.4. CFD Modeling and Numerical Setup
3. Experiment Test
3.1. Test Rig
3.2. Verification and Atomization Effect Analysis
3.2.1. Experimental Verification
3.2.2. Effect of Air Pressure
3.2.3. Effect of Gas–Liquid Pressure Ratio
4. Numerical Results
4.1. Effect of Air Pressure
4.2. Effect of Oil Flow Rate
4.3. Effect of Oil Viscosity
4.4. Effect of Oil Surface Tension
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faruck, A.A.M.; Hsu, C.-J.; Doerr, N.; Weigand, M.; Gachot, C. How lubricant formulations and properties influence the performance of rotorcraft transmissions under loss of lubrication conditions. Tribol. Int. 2020, 151, 106390. [Google Scholar] [CrossRef]
- Tawakoli, T.; Hadad, M.; Sadeghi, M. Influence of oil mist parameters on minimum quantity lubrication—MQL grinding process. Int. J. Mach. Tools Manuf. 2010, 50, 521–531. [Google Scholar] [CrossRef]
- Murugan, R.; Balusamy, S.; Kolhe, P. Experimental Study of Liquid Spray Mode of Twin Fluid Atomizer Using Optical Diagnostic Tool. Flow Turbul. Combust. 2021, 106, 261–289. [Google Scholar] [CrossRef]
- Yoon, S.H.; Kim, D.Y.; Kim, D.K.; Kim, B.H. Effect of nozzle geometry for swirl type twin-fluid water mist nozzle on the spray characteristic. J. Mech. Sci. Technol. 2011, 25, 1761–1766. [Google Scholar] [CrossRef]
- Seyedin, S.H.; Ahmadi, M.; Seyedin, S.V. Design and construction of the pressure swirl nozzle and experimental investigation of spray characteristics. Teh. Glas. 2019, 13, 204–212. [Google Scholar] [CrossRef]
- Yakut, R.; Yakut, K.; Sabolsky, E.; Kuhlman, J. Experimental determination of cooling and spray characteristics of the water electrospray. Int. Commun. Heat Mass Transf. 2021, 120, 105046. [Google Scholar] [CrossRef]
- Sarker, M.; Rahman, M.S.; Mandal, S.; Rony, M. A Study on Aerosol Spray Characteristics of Different Size Atomizers. Aerosol Sci. Eng. 2020, 4, 306–319. [Google Scholar] [CrossRef]
- Chaudhari, V.; Kulkarni, A.; Deshmukh, D. Spray characteristics of biofuels for advance combustion engines. Clean. Eng. Technol. 2021, 5, 100265. [Google Scholar] [CrossRef]
- Gad, H.; Ibrahim, I.; Abdel-Baky, M.; Abd El-samed, A.; Farag, T. Experimental study of diesel fuel atomization performance of air blast atomizer. Exp. Therm. Fluid Sci. 2018, 99, 211–218. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Hu, H. Effects of chamber pressure on the kinematic characteristics of spray flows exhausted from an airblast atomizer. Exp. Therm. Fluid Sci. 2022, 130, 110514. [Google Scholar] [CrossRef]
- Sattelmayer, T.; Wittig, S. Internal flow effects in prefilming airblast atomizers Mechanisms of atomization and droplet spectra. ASME J. Eng. Gas Turbines Power 1986, 108, 465–472. [Google Scholar] [CrossRef]
- Lilan, H.; Qian, J.; Pan, N. Study on atomization particle size characteristics of two-phase flow nozzle. J. Intell. Fuzzy Syst. 2021, 40, 7837–7847. [Google Scholar] [CrossRef]
- Han, H.; Wang, P.; Li, Y.; Liu, R.; Tian, C. Effect of water supply pressure on atomization characteristics and dust-reduction efficiency of internal mixing air atomizing nozzle. Adv. Powder Technol. 2020, 31, 252–268. [Google Scholar] [CrossRef]
- Villiers, E.D.; Gosman, D.; Weller, H. Detailed Investigation of Diesel Spray Atomization Using Quasi-Direct CFD Simulation(Spray Technologies, Atomization). Int. Symp. Diagn. Model. Combust. Intern. Combust. Engines 2004, 2004, 295–302. [Google Scholar] [CrossRef]
- Ishimoto, J.; Hoshina, H.; Tsuchiyama, T.; Watanabe, H.; Haga, A.; Sato, F. Integrated simulation of the atomization process of a liquid jet through a cylindrical nozzle. Interdiscip. Inf. Sci. 2007, 13, 7–16. [Google Scholar] [CrossRef]
- Jones, W.P.; Marquis, A.J.; Noh, D. An investigation of a turbulent spray flame using Large Eddy Simulation with a stochastic breakup model. Combust. Flame 2017, 186, 277–298. [Google Scholar] [CrossRef] [Green Version]
- Nazeer, Y.; Ehmann, M.; Sami, M.; Gavaises, M. Atomization mechanism of internally mixing twin-fluid y-jet atomizer. J. Energy Eng. 2021, 147, 04020075. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Zhang, Y.; Zhou, G. Numerical study of the effect of geometric parameters on the internal flow of a pressure nozzle for dustfall. Adv. Powder Technol. 2021, 32, 1561–1572. [Google Scholar] [CrossRef]
- Yu, H.; Jin, Y.-C.; Cheng, W.; Yang, X.; Peng, X.; Xie, Y. Multiscale simulation of atomization process and droplet particles diffusion of pressure-swirl nozzle. Powder Technol. 2021, 379, 127–143. [Google Scholar] [CrossRef]
- Ludwig, W.; Zając, D.; Ligus, G.; Korman, P. Analysis of pneumatic nozzle operation with the stochastic Euler-Lagrange model. Chem. Eng. Sci. 2019, 197, 386–403. [Google Scholar] [CrossRef]
- Bazdidi-Tehrani, F.; Zeinivand, H. Presumed PDF modeling of reactive two-phase flow in a three-dimensional jet-stabilized model combustor. Energy Convers. Manag. 2010, 51, 225–234. [Google Scholar] [CrossRef]
- Huang, L.; Kumar, K.; Mujumdar, A. Simulation of a spray dryer fitted with a rotary disk atomizer using a three-dimensional computional fluid dynamic model. Dry. Technol. 2004, 22, 1489–1515. [Google Scholar] [CrossRef]
- Shih, T.-H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Sun, H.; Yan, P.; Tian, L.; Ren, G.; Xu, Y.; Sheng, Z. Effects of Hydrogen Multijet and Flow Rate Assignment on the Combustion Flow Characteristics in a Jet-Stabilized Combustor. ACS Omega 2021, 6, 12952–12964. [Google Scholar] [CrossRef] [PubMed]
- Zahari, N.M.; Zawawi, M.H.; Sidek, L.M.; Mohamad, D.; Itam, Z.; Ramli, M.Z.; Syamsir, A.; Abas, A.; Rashid, M. Introduction of discrete phase model (DPM) in fluid flow: A review. AIP Conf. Proc. 2018, 2030, 020234. [Google Scholar] [CrossRef]
Number of Grids | VG | |
---|---|---|
Case 1 | 206,675 | 82.86931 |
Case 2 | 505,114 | 88.28088 |
Case 3 | 2,082,167 | 82.12659 |
Case 4 | 2,727,160 | 81.77525 |
Case 5 | 3,165,034 | 81.53322 |
Pa | Pw | RGL | SMD |
---|---|---|---|
5.0 | 3.6 | 1.39 | 21.71 |
4.0 | 3.0 | 1.33 | 23.68 |
3.0 | 2.3 | 1.30 | 28.77 |
2.5 | 2.0 | 1.25 | 31.33 |
3.0 | 3.0 | 1 | 43.17 |
4.0 | 4.0 | 1 | 38.95 |
4.0 | 4.5 | 0.89 | 58.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Cheng, H.; Dai, Y.; Zhu, X. Atomization Characteristics of Special-Design Pneumatic Two-Fluid Nozzles for Helicopter Main Reducers: A Numerical and Experimental Investigation. Aerospace 2022, 9, 834. https://doi.org/10.3390/aerospace9120834
Liu H, Cheng H, Dai Y, Zhu X. Atomization Characteristics of Special-Design Pneumatic Two-Fluid Nozzles for Helicopter Main Reducers: A Numerical and Experimental Investigation. Aerospace. 2022; 9(12):834. https://doi.org/10.3390/aerospace9120834
Chicago/Turabian StyleLiu, He, Huiyun Cheng, Yu Dai, and Xiang Zhu. 2022. "Atomization Characteristics of Special-Design Pneumatic Two-Fluid Nozzles for Helicopter Main Reducers: A Numerical and Experimental Investigation" Aerospace 9, no. 12: 834. https://doi.org/10.3390/aerospace9120834
APA StyleLiu, H., Cheng, H., Dai, Y., & Zhu, X. (2022). Atomization Characteristics of Special-Design Pneumatic Two-Fluid Nozzles for Helicopter Main Reducers: A Numerical and Experimental Investigation. Aerospace, 9(12), 834. https://doi.org/10.3390/aerospace9120834